메뉴 건너뛰기




Volumn 10, Issue 3, 2009, Pages 766-779

Adaptive soil moisture profile filtering for horizontal information propagation in the independent column-based CLM2.0

Author keywords

[No Author keywords available]

Indexed keywords

DATA ASSIMILATION; ERROR CORRECTION; KALMAN FILTER; MODEL; OPTIMIZATION; SOIL DEPTH; SOIL MOISTURE; SOIL PROFILE;

EID: 68049095868     PISSN: 1525755X     EISSN: None     Source Type: Journal    
DOI: 10.1175/2008JHM1037.1     Document Type: Article
Times cited : (24)

References (39)
  • 1
    • 34247642674 scopus 로고    scopus 로고
    • An adaptive covariance inflation error correction algorithm for ensemble filters
    • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210-224.
    • (2007) Tellus , vol.59 A , pp. 210-224
    • Anderson, J.L.1
  • 2
    • 0344718925 scopus 로고    scopus 로고
    • Correcting land surface model predictions for the impact of temporally sparce rainfall rate measurements using an ensemble Kalman filter and surface brightness temperature observations
    • Crow, W. T., 2003: Correcting land surface model predictions for the impact of temporally sparce rainfall rate measurements using an ensemble Kalman filter and surface brightness temperature observations. J. Hydrometeor., 4, 960-973.
    • (2003) J. Hydrometeor , vol.4 , pp. 960-973
    • Crow, W.T.1
  • 3
    • 33746103323 scopus 로고    scopus 로고
    • Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture
    • Crow, W. T., and E. van Loon, 2006: Impact of incorrect model error assumptions on the sequential assimilation of remotely sensed surface soil moisture. J. Hydrometeor., 7, 421-432.
    • (2006) J. Hydrometeor , vol.7 , pp. 421-432
    • Crow, W.T.1    van Loon, E.2
  • 4
    • 0042412325 scopus 로고    scopus 로고
    • The Common Land Model
    • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013-1023.
    • (2003) Bull. Amer. Meteor. Soc , vol.84 , pp. 1013-1023
    • Dai, Y.1
  • 6
    • 0027042230 scopus 로고
    • Estimating model-error covariances for application to atmospheric data assimilation
    • Daley, R., 1992a: Estimating model-error covariances for application to atmospheric data assimilation. Mon. Wea. Rev., 120, 1735-1746.
    • (1992) Mon. Wea. Rev , vol.120 , pp. 1735-1746
    • Daley, R.1
  • 7
    • 0026613201 scopus 로고
    • Forecast-error statistics for homogeneous and inhomogeneous observation networks
    • Daley, R., 1992b: Forecast-error statistics for homogeneous and inhomogeneous observation networks. Mon. Wea. Rev., 120, 627-643.
    • (1992) Mon. Wea. Rev , vol.120 , pp. 627-643
    • Daley, R.1
  • 8
    • 0000991256 scopus 로고
    • On-line estimation of error covariance parameters for atmospheric data assimilation
    • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123, 1128-1145.
    • (1995) Mon. Wea. Rev , vol.123 , pp. 1128-1145
    • Dee, D.P.1
  • 9
    • 0032750664 scopus 로고    scopus 로고
    • Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology
    • Dee, D. P., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology. Mon. Wea. Rev., 127, 1822-1834.
    • (1999) Mon. Wea. Rev , vol.127 , pp. 1822-1834
    • Dee, D.P.1    da Silva, A.M.2
  • 10
    • 33745931058 scopus 로고    scopus 로고
    • Assessment of model uncertainty for soil moisture through ensemble verification
    • doi:10.1029/2005JD006367
    • De Lannoy, G. J. M., P. R. Houser, V. R. N. Pauwels, and N. E. C. Verhoest, 2006a: Assessment of model uncertainty for soil moisture through ensemble verification. J. Geophys. Res., 111, D10101, doi:10.1029/2005JD006367.
    • (2006) J. Geophys. Res , vol.111
    • De Lannoy, G.J.M.1    Houser, P.R.2    Pauwels, V.R.N.3    Verhoest, N.E.C.4
  • 13
    • 35848940507 scopus 로고    scopus 로고
    • Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter
    • doi:10.1029/2006WR005449
    • De Lannoy, G. J. M., R. H. Reichle, P. Houser, V. R. N. Pauwels, and N. E. C. Verhoest, 2007b: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43, W09410, doi:10.1029/2006WR005449.
    • (2007) Water Resour. Res , vol.43
    • De Lannoy, G.J.M.1    Reichle, R.H.2    Houser, P.3    Pauwels, V.R.N.4    Verhoest, N.E.C.5
  • 14
    • 33644624752 scopus 로고    scopus 로고
    • Joint calibration and uncertainty analysis of a groundwater model coupled with a Kalman filter
    • Drécourt, J.-P., H. Madsen, and D. Rosbjerg, 2006: Joint calibration and uncertainty analysis of a groundwater model coupled with a Kalman filter. Adv. Water Resour., 29, 719-734.
    • (2006) Adv. Water Resour , vol.29 , pp. 719-734
    • Drécourt, J.-P.1    Madsen, H.2    Rosbjerg, D.3
  • 15
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 143-10 162.
    • (1994) J. Geophys. Res , vol.99 , Issue.C5
    • Evensen, G.1
  • 17
    • 0036851862 scopus 로고    scopus 로고
    • Analysis-error statistics of a quasigeostrophic model using three-dimensional variational assimilation
    • Hamill, T., C. Snyder, and R. Morss, 2002: Analysis-error statistics of a quasigeostrophic model using three-dimensional variational assimilation. Mon. Wea. Rev., 130, 2777-2790.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 2777-2790
    • Hamill, T.1    Snyder, C.2    Morss, R.3
  • 18
    • 0022842583 scopus 로고
    • The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field
    • Hollingsworth, A., and P. Lönnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111-136.
    • (1986) Tellus , vol.38 A , pp. 111-136
    • Hollingsworth, A.1    Lönnberg, P.2
  • 20
    • 0030184050 scopus 로고    scopus 로고
    • Spatio-temporal prediction of snow water equivalent using the Kalman filter
    • Huang, H.-C., and N. Cressie, 1996: Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput. Stat. Data Anal., 22, 159-175.
    • (1996) Comput. Stat. Data Anal , vol.22 , pp. 159-175
    • Huang, H.-C.1    Cressie, N.2
  • 21
    • 0014537240 scopus 로고
    • Adaptive filtering
    • Jazwinski, A., 1969: Adaptive filtering. Automatica, 5, 475-485.
    • (1969) Automatica , vol.5 , pp. 475-485
    • Jazwinski, A.1
  • 22
    • 84939007907 scopus 로고
    • An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise
    • Kailath, T., 1968: An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise. IEEE Trans. Autom. Control, AC-13, 646-655.
    • (1968) IEEE Trans. Autom. Control , vol.AC-13 , pp. 646-655
    • Kailath, T.1
  • 23
    • 0032757960 scopus 로고    scopus 로고
    • A multiple scale state-space model of characterizing subgrid scale variability of near-surface soil moisture
    • Kumar, P., 1999: A multiple scale state-space model of characterizing subgrid scale variability of near-surface soil moisture. IEEE Trans. Geosci. Remote Sens., 37, 182-197.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , pp. 182-197
    • Kumar, P.1
  • 25
    • 0036704805 scopus 로고    scopus 로고
    • An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering
    • McLaughlin, D., 2002: An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour., 25, 1275-1286.
    • (2002) Adv. Water Resour , vol.25 , pp. 1275-1286
    • McLaughlin, D.1
  • 26
    • 0014764781 scopus 로고
    • On the identification of variances and adaptive Kalman filtering
    • Mehra, R., 1970: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control, 15, 175-184.
    • (1970) IEEE Trans. Autom. Control , vol.15 , pp. 175-184
    • Mehra, R.1
  • 27
    • 0015416561 scopus 로고
    • Approaches to adaptive filtering
    • Mehra, R., 1972: Approaches to adaptive filtering. IEEE Trans. Autom. Control, 17, 693-698.
    • (1972) IEEE Trans. Autom. Control , vol.17 , pp. 693-698
    • Mehra, R.1
  • 28
    • 0034082826 scopus 로고    scopus 로고
    • An adaptive ensemble Kalman filter
    • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128, 416-433.
    • (2000) Mon. Wea. Rev , vol.128 , pp. 416-433
    • Mitchell, H.L.1    Houtekamer, P.L.2
  • 29
    • 0016990568 scopus 로고
    • Adaptive sequential estimation with unknown noise statistics
    • Myers, K., and B. Tapley, 1976: Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Control, 21, 520-523.
    • (1976) IEEE Trans. Autom. Control , vol.21 , pp. 520-523
    • Myers, K.1    Tapley, B.2
  • 30
    • 14744285768 scopus 로고    scopus 로고
    • Optimal multiscale Kalman filter assimilation for near-surface soil moisture into land surface models
    • doi:10.1029/2004JD004745
    • Parada, L. M., and X. Liang, 2004: Optimal multiscale Kalman filter assimilation for near-surface soil moisture into land surface models. J. Geophys. Res., 109, D24109, doi:10.1029/2004JD004745.
    • (2004) J. Geophys. Res , vol.109
    • Parada, L.M.1    Liang, X.2
  • 31
    • 0842334539 scopus 로고    scopus 로고
    • Assessing the impact of horizontal error correlations in background fields on soil moisture estimation
    • Reichle, R. H., and R. Koster, 2003: Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeor., 4, 1229-1242.
    • (2003) J. Hydrometeor , vol.4 , pp. 1229-1242
    • Reichle, R.H.1    Koster, R.2
  • 32
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103-114.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 103-114
    • Reichle, R.H.1    McLaughlin, D.B.2    Entekhabi, D.3
  • 33
    • 0036960475 scopus 로고    scopus 로고
    • Extended versus ensemble Kalman filtering for land data assimilation
    • Reichle, R. H., J. P. Walker, P. R. Houser, and R. D. Koster, 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3, 728-740.
    • (2002) J. Hydrometeor , vol.3 , pp. 728-740
    • Reichle, R.H.1    Walker, J.P.2    Houser, P.R.3    Koster, R.D.4
  • 34
    • 43049119984 scopus 로고    scopus 로고
    • An adaptive ensemble Kalman filter for soil moisture data assimilation
    • doi:10.1029/2007WR006357
    • Reichle, R. H., W. Crow, and C. Keppenne, 2008: An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res., 44, W03423, doi:10.1029/2007WR006357.
    • (2008) Water Resour. Res , vol.44
    • Reichle, R.H.1    Crow, W.2    Keppenne, C.3
  • 35
    • 33746624237 scopus 로고    scopus 로고
    • Data assimilation and adaptive forecasting of water levels in the River Severn catchment, United Kingdom
    • doi:10.1029/2005WR004373
    • Romanowicz, R. J., P. C. Young, and K. J. Beven, 2006: Data assimilation and adaptive forecasting of water levels in the River Severn catchment, United Kingdom. Water Resour. Res., 42, W06407, doi:10.1029/2005WR004373.
    • (2006) Water Resour. Res , vol.42
    • Romanowicz, R.J.1    Young, P.C.2    Beven, K.J.3
  • 36
    • 0025656204 scopus 로고
    • Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data
    • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 1250-1277.
    • (1990) Mon. Wea. Rev , vol.118 , pp. 1250-1277
    • Stauffer, D.R.1    Seaman, N.L.2
  • 37
    • 0026277678 scopus 로고
    • Using Kalman filtering to improve and quantify the uncertainty of numerical groundwater simulations. 1. The role of system noise and its calibration
    • van Geer, F. C., C. B. Te Stroet, and Z. Yangxiao, 1991: Using Kalman filtering to improve and quantify the uncertainty of numerical groundwater simulations. 1. The role of system noise and its calibration. Water Resour. Res., 27, 1987-1994.
    • (1991) Water Resour. Res , vol.27 , pp. 1987-1994
    • van Geer, F.C.1    Stroet, C.B.T.2    Yangxiao, Z.3
  • 38
    • 4344657161 scopus 로고    scopus 로고
    • Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution
    • Walker, J. P., and P. R. Houser, 2004: Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Resour., 27, 785-801.
    • (2004) Adv. Water Resour , vol.27 , pp. 785-801
    • Walker, J.P.1    Houser, P.R.2
  • 39
    • 1842843161 scopus 로고    scopus 로고
    • Estimating soil water contents from soil temperature measurements by using an adaptive Kalman filter
    • Zhang, S.-W., C.-J. Qiu, and A. Xu, 2004: Estimating soil water contents from soil temperature measurements by using an adaptive Kalman filter. J. Appl. Meteor., 43, 379-389.
    • (2004) J. Appl. Meteor , vol.43 , pp. 379-389
    • Zhang, S.-W.1    Qiu, C.-J.2    Xu, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.