-
1
-
-
16244415527
-
-
Arnby, C. H.; Hagner, S.; Dance, I. CrystEngComm 2004, 6, 257-275.
-
(2004)
CrystEngComm
, vol.6
, pp. 257-275
-
-
Arnby, C.H.1
Hagner, S.2
Dance, I.3
-
2
-
-
0001801557
-
-
(a) O'Brien, S.; Gaura, R. M.; Landee, C. P.; Ramakhrishna, B. L.; Willett, R. D. Inorg. Chim. Acta 1988, 141, 83-89.
-
(1988)
Inorg. Chim. Acta
, vol.141
, pp. 83-89
-
-
O'Brien, S.1
Gaura, R.M.2
Landee, C.P.3
Ramakhrishna, B.L.4
Willett, R.D.5
-
3
-
-
33749679642
-
-
(b) Willett, R. D.; Twamley, B.; Montfrooij, W.; Granroth, G. E.; Nagler, S. E.; Hall, D. W.; Park, J.-H.; Watson, B. C.; Meisel, M. W.; Talham, D. R. Inorg. Chem. 2006, 45, 7689-7697.
-
(2006)
Inorg. Chem
, vol.45
, pp. 7689-7697
-
-
Willett, R.D.1
Twamley, B.2
Montfrooij, W.3
Granroth, G.E.4
Nagler, S.E.5
Hall, D.W.6
Park, J.-H.7
Watson, B.C.8
Meisel, M.W.9
Talham, D.R.10
-
7
-
-
68049094522
-
-
Patent 39847 , 130395x
-
(b) Asakawa, Y.; Matsuda, R.; Hashimoto, T. Jpn. Patent 39847 (1984); Chem. Abstr. 1984, 101, 130395x.
-
(1984)
Chem. Abstr
, vol.101
-
-
Asakawa, Y.1
Matsuda, R.2
Hashimoto3
Jpn, T.4
-
8
-
-
0024842624
-
-
(c) Takehira, K.; Shimizu, M.; Watanabe, Y.; Orita, H.; Hayakawa, T. Tetrahedron Lett. 1989, 30, 6691-6692.
-
(1989)
Tetrahedron Lett
, vol.30
, pp. 6691-6692
-
-
Takehira, K.1
Shimizu, M.2
Watanabe, Y.3
Orita, H.4
Hayakawa, T.5
-
9
-
-
0001564669
-
-
(d) Shimizu, M.; Watanabe, Y.; Orita, H.; Hyakawa, T.; Takehira, K. Bull. Chem. Soc. Jpn. 1992, 65, 1522-1526.
-
(1992)
Bull. Chem. Soc. Jpn
, vol.65
, pp. 1522-1526
-
-
Shimizu, M.1
Watanabe, Y.2
Orita, H.3
Hyakawa, T.4
Takehira, K.5
-
10
-
-
20044392842
-
-
(e) Sasaki, T.; Zhong, C.; Tada, M.; Iwasawa, Y. Chem. Commun. 2005, 2506-2508.
-
(2005)
Chem. Commun
, pp. 2506-2508
-
-
Sasaki, T.1
Zhong, C.2
Tada, M.3
Iwasawa, Y.4
-
11
-
-
49349133909
-
-
Halocuprate(I) compounds, on the other hand, are used synthetically and have been shown to be convenient sources of nucleophilic chloride. See: (a) Muscio, O. J. Jr.; Jun, Y. M.; Philip, J. B. Jr. Tetrahedron Lett. 1978, 19, 2379-2382.
-
Halocuprate(I) compounds, on the other hand, are used synthetically and have been shown to be convenient sources of nucleophilic chloride. See: (a) Muscio, O. J. Jr.; Jun, Y. M.; Philip, J. B. Jr. Tetrahedron Lett. 1978, 19, 2379-2382.
-
-
-
-
12
-
-
0001319573
-
-
(b) Elsevier, C. J.; Meijer, J.; Tadema, G.; Stehouwer, P. M.; Bos, H. J. T.; Vermeer, P.; Runge, W. J. Org. Chem. 1982, 47, 2194-2196.
-
(1982)
J. Org. Chem
, vol.47
, pp. 2194-2196
-
-
Elsevier, C.J.1
Meijer, J.2
Tadema, G.3
Stehouwer, P.M.4
Bos, H.J.T.5
Vermeer, P.6
Runge, W.7
-
13
-
-
0345405019
-
-
(c) Elsevier, C. J.; Bos, H. J. T.; Vermeer, P.; Spek, A. L.; Kroon, J. J. Org. Chem. 1984, 49, 379-381.
-
(1984)
J. Org. Chem
, vol.49
, pp. 379-381
-
-
Elsevier, C.J.1
Bos, H.J.T.2
Vermeer, P.3
Spek, A.L.4
Kroon, J.5
-
16
-
-
36849002980
-
-
For recent reviews, see: a
-
For recent reviews, see: (a) Punniyamurthy, T.; Rout, L. Coord. Chem. Rev. 2008, 252, 134-154.
-
(2008)
Coord. Chem. Rev
, vol.252
, pp. 134-154
-
-
Punniyamurthy, T.1
Rout, L.2
-
18
-
-
33847298540
-
-
(a) Michaelis, D. J.; Shaffer, C. J.; Yoon, T. P. J. Am. Chem. Soc. 2007, 129, 1866-1867.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 1866-1867
-
-
Michaelis, D.J.1
Shaffer, C.J.2
Yoon, T.P.3
-
19
-
-
43949088503
-
-
(b) Michaelis, D. J.; Ischay, M. A.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 6610-6615.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 6610-6615
-
-
Michaelis, D.J.1
Ischay, M.A.2
Yoon, T.P.3
-
20
-
-
65749088482
-
-
Michaelis, D. J.; Williamson, K. S.; Yoon, T. P. Tetrahedron 2009, 65, 5118-5124.
-
(2009)
Tetrahedron
, vol.65
, pp. 5118-5124
-
-
Michaelis, D.J.1
Williamson, K.S.2
Yoon, T.P.3
-
21
-
-
0343499311
-
-
(a) Davis, F. A.; Nadir, U. K.; Kluger, E. W. J. Chem. Soc., Chem. Commun. 1977, 25-26.
-
(1977)
J. Chem. Soc., Chem. Commun
, pp. 25-26
-
-
Davis, F.A.1
Nadir, U.K.2
Kluger, E.W.3
-
22
-
-
0002623474
-
-
(b) Davis, F. A.; Jenkins, R.; Yocklovich, S. G. Tetrahedron Lett. 1978, 52, 5171-5174.
-
(1978)
Tetrahedron Lett
, vol.52
, pp. 5171-5174
-
-
Davis, F.A.1
Jenkins, R.2
Yocklovich, S.G.3
-
23
-
-
33847799422
-
-
Sharpless, K. B.; Chong, A. O.; Oshima, J. J. Org. Chem. 1976, 41, 177-179.
-
(1976)
J. Org. Chem
, vol.41
, pp. 177-179
-
-
Sharpless, K.B.1
Chong, A.O.2
Oshima, J.3
-
24
-
-
37049077297
-
-
Jennings, W. B.; Watson, S. P.; Boyd, D. R. J. Chem. Soc., Chem. Commun. 1988, 931-932.
-
(1988)
J. Chem. Soc., Chem. Commun
, pp. 931-932
-
-
Jennings, W.B.1
Watson, S.P.2
Boyd, D.R.3
-
25
-
-
0030865569
-
-
Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J.-C.; Aubry, A.; Collet, A. Chem. - Eur. J. 1997, 3, 1691-1709.
-
(1997)
Chem. - Eur. J
, vol.3
, pp. 1691-1709
-
-
Vidal, J.1
Damestoy, S.2
Guy, L.3
Hannachi, J.-C.4
Aubry, A.5
Collet, A.6
-
26
-
-
37049094963
-
-
Boyd, D. R.; Jennings, W. B.; McGuckin, R. M.; Rutherford, M.; Saket, B. M. J. Chem. Soc., Chem. Commun. 1985, 582-583.
-
(1985)
J. Chem. Soc., Chem. Commun
, pp. 582-583
-
-
Boyd, D.R.1
Jennings, W.B.2
McGuckin, R.M.3
Rutherford, M.4
Saket, B.M.5
-
27
-
-
33749349096
-
-
The direct formation of metal-NHC complexes from the reaction of imidazolium salts with metal complexes bearing basic ligands is well-precedented: Herrmann, W. A, Elison, M, Fischer, J, Köcher, C, Artus, G. R. J. Angew. Chem, Int. Ed. Engl. 1995, 34, 2371-2374
-
The direct formation of metal-NHC complexes from the reaction of imidazolium salts with metal complexes bearing basic ligands is well-precedented: Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 2371-2374.
-
-
-
-
28
-
-
0032527724
-
-
For a rare example of halogen-catalyzed aziridination, see
-
For a rare example of halogen-catalyzed aziridination, see: Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 6844-6845
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 6844-6845
-
-
Jeong, J.U.1
Tao, B.2
Sagasser, I.3
Henniges, H.4
Sharpless, K.B.5
-
29
-
-
0030790051
-
-
Maligres, P. E.; See, M. M.; Askin, D.; Reider, P. J. Tetrahedron Lett. 1997, 38, 5253-5256.
-
(1997)
Tetrahedron Lett
, vol.38
, pp. 5253-5256
-
-
Maligres, P.E.1
See, M.M.2
Askin, D.3
Reider, P.J.4
-
30
-
-
0030598098
-
-
(a) Jeffery, T. Tetrahedron 1996, 52, 10113-10130.
-
(1996)
Tetrahedron
, vol.52
, pp. 10113-10130
-
-
Jeffery, T.1
-
32
-
-
33846213170
-
-
(c) Fairlamb, I. J. S.; Taylor, R. J. K.; Serrano, J. L.; Sanchez, G. New J. Chem. 2006, 30, 1695-1704.
-
(2006)
New J. Chem
, vol.30
, pp. 1695-1704
-
-
Fairlamb, I.J.S.1
Taylor, R.J.K.2
Serrano, J.L.3
Sanchez, G.4
-
33
-
-
0027945128
-
-
Radical rearrangements of N-alkyloxaziridines initiated upon oneelectron reduction by copper(I) catalysts have been studied in detail by Aubé. See: (a) Aube, J.; Ghosh, S.; Tanol, M. J. Am. Chem. Soc. 1994, 116, 9009-9018.
-
Radical rearrangements of N-alkyloxaziridines initiated upon oneelectron reduction by copper(I) catalysts have been studied in detail by Aubé. See: (a) Aube, J.; Ghosh, S.; Tanol, M. J. Am. Chem. Soc. 1994, 116, 9009-9018.
-
-
-
-
35
-
-
0037034854
-
-
An intramolecular aminohydroxylation of olefins using N-benzoyloxyamines catalyzed by copper(I) salts has been reported: Noack, M, Göttlich, R. Chem. Commun. 2002, 536-537
-
An intramolecular aminohydroxylation of olefins using N-benzoyloxyamines catalyzed by copper(I) salts has been reported: Noack, M.; Göttlich, R. Chem. Commun. 2002, 536-537.
-
-
-
-
36
-
-
68049107768
-
-
These stoichiometric studies were conducted using copper(I) and copper(II) triflate because of the limited solubility of the chloride and TFA salts in methylene chloride
-
These stoichiometric studies were conducted using copper(I) and copper(II) triflate because of the limited solubility of the chloride and TFA salts in methylene chloride.
-
-
-
-
37
-
-
1542735002
-
-
This mechanism would be similar to the molecule-induced homolysis pathway proposed by Minisci to explain dioxirane-mediated epoxidations: Bravo, A, Fontana, F, Fronza, G, Minisci, F, Zhao, L. J. Org. Chem. 1998, 63, 254-263
-
This mechanism would be similar to the "molecule-induced homolysis" pathway proposed by Minisci to explain dioxirane-mediated epoxidations: Bravo, A.; Fontana, F.; Fronza, G.; Minisci, F.; Zhao, L. J. Org. Chem. 1998, 63, 254-263.
-
-
-
-
38
-
-
0030669437
-
-
Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147-10152.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 10147-10152
-
-
Houk, K.N.1
Liu, J.2
DeMello, N.C.3
Condroski, K.R.4
-
39
-
-
0017786109
-
-
Margerum's studies on copper(II) - peptide complexes indicate that multiple anionic ligands facilitate electrochemical oxidation of the metal by stabilizing the copper(III) oxidation state: Bossu, F. P.; Chellappa, K. L.; Margerum, D. W. J. Am. Chem. Soc. 1977, 99, 2195-2203.
-
Margerum's studies on copper(II) - peptide complexes indicate that multiple anionic ligands facilitate electrochemical oxidation of the metal by stabilizing the copper(III) oxidation state: Bossu, F. P.; Chellappa, K. L.; Margerum, D. W. J. Am. Chem. Soc. 1977, 99, 2195-2203.
-
-
-
-
40
-
-
0000676881
-
-
A copper(III) intermediate has been implicated in the decomposition of hypochlorite and hypobromite salts by anionic hydroxycuprate(II) catalysts
-
A copper(III) intermediate has been implicated in the decomposition of hypochlorite and hypobromite salts by anionic hydroxycuprate(II) catalysts: Gray, E. T. Jr.; Taylor, R. W.; Margerum, D. W. Inorg. Chem. 1977, 16, 3047-3055.
-
(1977)
Inorg. Chem
, vol.16
, pp. 3047-3055
-
-
Gray Jr., E.T.1
Taylor, R.W.2
Margerum, D.W.3
-
41
-
-
68049089319
-
-
We have also ruled out a mechanism involving initial homolytic ring opening of the oxaziridine. One-electron reduction of the oxaziridine would be expected to produce a copper alkoxide and a nitrogen-centered radical, in analogy to Aubé's studies with copper(I),18 which would give rise to the opposite regiochemical outcome. Moreover, as shown in eq 5, copper(I) complexes reduce the oxaziridine but fail to produce any aminohydroxylation products, which suggests that reductive cleavage of the N-O bond is not the initial step of the mechanism
-
18 which would give rise to the opposite regiochemical outcome. Moreover, as shown in eq 5, copper(I) complexes reduce the oxaziridine but fail to produce any aminohydroxylation products, which suggests that reductive cleavage of the N-O bond is not the initial step of the mechanism.
-
-
-
-
42
-
-
0008961158
-
-
Kharasch, M. S.; Jensen, E. V.; Urry, W. H. J. Am. Chem. Soc. 1946, 68, 154-155.
-
(1946)
J. Am. Chem. Soc
, vol.68
, pp. 154-155
-
-
Kharasch, M.S.1
Jensen, E.V.2
Urry, W.H.3
-
43
-
-
68049108833
-
-
For reviews, see: (a) Richey, H. G. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; John Wiley: New York, 1972; III, pp 1201-1294.
-
For reviews, see: (a) Richey, H. G. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; John Wiley: New York, 1972; Vol. III, pp 1201-1294.
-
-
-
-
44
-
-
68049085156
-
-
Wiberg, K. B.; Hess, B. A., Jr.; Ashe, A. J. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; John Wiley: New York, 1972; III, pp 1295-1346.
-
(b) Wiberg, K. B.; Hess, B. A., Jr.; Ashe, A. J. In Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; John Wiley: New York, 1972; Vol. III, pp 1295-1346.
-
-
-
-
45
-
-
0002846538
-
-
(c) Olah, G. A.; Reddy, V. P.; Prakash, G. K. S. Chem. Rev. 1992, 92, 69-95.
-
(1992)
Chem. Rev
, vol.92
, pp. 69-95
-
-
Olah, G.A.1
Reddy, V.P.2
Prakash, G.K.S.3
-
49
-
-
4544384607
-
-
The radical mechanism may also help to explain the observed reactivity of allyl silanes. Previously, we found that allyltriisopropylsilane reacts with oxaziridine 1 in the presence of Cu(TFA)2/HMPA to afford the expected aminohydroxylation product in 66% yield. However, this reaction required extended reaction times (36 h) to proceed to completion. The ability of β-silicon groups to stabilize both cations and radicals is well-known, but the former stabilization energy has been estimated to be 29-30 kcal/mol, while the latter is closer to 3-5 kcal/mol. Thus the observation that allyl silanes react more readily than primary aliphatic olefins but still require longer reaction times than styrenes is more consistent with a radical mechanism than with our originally proposed cationic mechanism. For a recent review of α- and β-silicon effects in organic synthesis, see: Chabaud, L, James, P, Landais, Y. Eur. J. Org. Chem. 2004, 3173-3199
-
2/HMPA to afford the expected aminohydroxylation product in 66% yield. However, this reaction required extended reaction times (36 h) to proceed to completion. The ability of β-silicon groups to stabilize both cations and radicals is well-known, but the former stabilization energy has been estimated to be 29-30 kcal/mol, while the latter is closer to 3-5 kcal/mol. Thus the observation that allyl silanes react more readily than primary aliphatic olefins but still require longer reaction times than styrenes is more consistent with a radical mechanism than with our originally proposed cationic mechanism. For a recent review of α- and β-silicon effects in organic synthesis, see: Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173-3199.
-
-
-
|