-
1
-
-
3242678851
-
A variant of Cauchy's method with accelerated fifth-order convergence
-
Grau M., and Noguera M. A variant of Cauchy's method with accelerated fifth-order convergence. Appl. Math. Lett. 17 (2004) 509-517
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 509-517
-
-
Grau, M.1
Noguera, M.2
-
2
-
-
29544450533
-
An improvement of the Euler-Chebyshev iterative method
-
Grau M., and Díaz-Barrero J.L. An improvement of the Euler-Chebyshev iterative method. J. Math. Anal. Appl. 315 (2006) 1-7
-
(2006)
J. Math. Anal. Appl.
, vol.315
, pp. 1-7
-
-
Grau, M.1
Díaz-Barrero, J.L.2
-
4
-
-
0012466757
-
A variant of Newton's method with accelerated third-order convergence
-
Weerakoon S., and Fernando T.G.I. A variant of Newton's method with accelerated third-order convergence. Appl. Math. Lett. 13 (2000) 87-93
-
(2000)
Appl. Math. Lett.
, vol.13
, pp. 87-93
-
-
Weerakoon, S.1
Fernando, T.G.I.2
-
5
-
-
34247646002
-
Modified Chebyshev-Halley methods with sixth-order convergence
-
Kou J., and Li Y. Modified Chebyshev-Halley methods with sixth-order convergence. Appl. Math. Comput. 188 (2007) 681-685
-
(2007)
Appl. Math. Comput.
, vol.188
, pp. 681-685
-
-
Kou, J.1
Li, Y.2
-
6
-
-
0016115525
-
Optimal order of one-point and multipoint iteration
-
Kung H.T., and Traub J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21 (1974) 643-651
-
(1974)
J. Assoc. Comput. Mach.
, vol.21
, pp. 643-651
-
-
Kung, H.T.1
Traub, J.F.2
-
7
-
-
33947709556
-
A family of fifth-order iterations composed of Newton and third-order methods
-
Kou J., Li Y., and Wang X. A family of fifth-order iterations composed of Newton and third-order methods. Appl. Math. Comput. 186 (2007) 1258-1262
-
(2007)
Appl. Math. Comput.
, vol.186
, pp. 1258-1262
-
-
Kou, J.1
Li, Y.2
Wang, X.3
-
11
-
-
77951140632
-
Some variants of the Chebyshev-Halley family of methods with fifth order of convergence
-
10.1080/00207160802208358
-
Grau-Sánchez M., and Gutiérrez J.M. Some variants of the Chebyshev-Halley family of methods with fifth order of convergence. Int. J. Comput. Math. (2009) 10.1080/00207160802208358
-
(2009)
Int. J. Comput. Math.
-
-
Grau-Sánchez, M.1
Gutiérrez, J.M.2
-
12
-
-
34447609127
-
Über unendlich viele Algorithmen zur Auflösung der Gleichungen
-
Schröder E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2 (1870) 317-365
-
(1870)
Math. Ann.
, vol.2
, pp. 317-365
-
-
Schröder, E.1
-
13
-
-
34547372190
-
Improvement of the efficiency of some three-step iterative like-Newton methods
-
Grau-Sánchez M. Improvement of the efficiency of some three-step iterative like-Newton methods. Numer. Math. 107 (2007) 131-146
-
(2007)
Numer. Math.
, vol.107
, pp. 131-146
-
-
Grau-Sánchez, M.1
-
14
-
-
0037114647
-
A class of quasi-Newton generalized Steffensen methods on Banach spaces
-
Amat S., Busquier S., and Candela V. A class of quasi-Newton generalized Steffensen methods on Banach spaces. J. Comp. Appl. Math. 149 (2002) 397-406
-
(2002)
J. Comp. Appl. Math.
, vol.149
, pp. 397-406
-
-
Amat, S.1
Busquier, S.2
Candela, V.3
-
15
-
-
17944380525
-
Convergence and numerical analysis of a family of two-step Steffensen's methods
-
Amat S., and Busquier S. Convergence and numerical analysis of a family of two-step Steffensen's methods. Comput. Math. Appl. 49 (2005) 13-22
-
(2005)
Comput. Math. Appl.
, vol.49
, pp. 13-22
-
-
Amat, S.1
Busquier, S.2
-
16
-
-
33749508998
-
A two-step Steffensen's method under modified convergence conditions
-
Amat S., and Busquier S. A two-step Steffensen's method under modified convergence conditions. J. Math. Anal. Appl. 324 (2006) 1084-1092
-
(2006)
J. Math. Anal. Appl.
, vol.324
, pp. 1084-1092
-
-
Amat, S.1
Busquier, S.2
-
17
-
-
34547099071
-
Third-order iterative methods under Kantorovich conditions
-
Amat S., and Busquier S. Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336 (2007) 243-261
-
(2007)
J. Math. Anal. Appl.
, vol.336
, pp. 243-261
-
-
Amat, S.1
Busquier, S.2
-
18
-
-
0042627959
-
The super-Halley method using divided differences
-
Argyros I.K. The super-Halley method using divided differences. Appl. Math. Lett. 10 (1997) 91-95
-
(1997)
Appl. Math. Lett.
, vol.10
, pp. 91-95
-
-
Argyros, I.K.1
-
19
-
-
0036681220
-
Semilocal convergence of the Secant method under mild convergence conditions of differentiability
-
Hernández M.A., and Rubio M.J. Semilocal convergence of the Secant method under mild convergence conditions of differentiability. Comput. Math. Appl. 44 (2002) 277-285
-
(2002)
Comput. Math. Appl.
, vol.44
, pp. 277-285
-
-
Hernández, M.A.1
Rubio, M.J.2
-
20
-
-
33646503070
-
The convergence ball of the Secant method under Hölder continuous divided differences
-
Ren H., and Wu Q. The convergence ball of the Secant method under Hölder continuous divided differences. J. Comp. Appl. Math. 194 (2006) 284-293
-
(2006)
J. Comp. Appl. Math.
, vol.194
, pp. 284-293
-
-
Ren, H.1
Wu, Q.2
-
21
-
-
34250672389
-
Accelerated iterative methods for finding solutions od a system of nonlinear equations
-
Grau-Sánchez M., Peris J.M., and Gutiérrez J.M. Accelerated iterative methods for finding solutions od a system of nonlinear equations. Appl. Math. Comput. 190 (2007) 1815-1823
-
(2007)
Appl. Math. Comput.
, vol.190
, pp. 1815-1823
-
-
Grau-Sánchez, M.1
Peris, J.M.2
Gutiérrez, J.M.3
|