-
1
-
-
77950638183
-
A closed dimensionless linear set
-
MR0001824 1:302f
-
E. Best. A closed dimensionless linear set. Proc. Edinburgh Math. Soc. (2), 6: 105-108, 1939. MR0001824 (1:302f)
-
(1939)
Proc. Edinburgh Math. Soc.
, vol.6
, Issue.2
, pp. 105-108
-
-
Best, E.1
-
2
-
-
84962994650
-
On the complementary intervals of a linear closed set of zero Lebesgue measure
-
MR0064849 16:344d
-
A. S. Besicovitch and S. J. Taylor. On the complementary intervals of a linear closed set of zero Lebesgue measure. J. London Math. Soc., 29: 449-459, 1954. MR0064849 (16:344d)
-
(1954)
J. London Math. Soc.
, vol.29
, pp. 449-459
-
-
Besicovitch, A.S.1
Taylor, S.J.2
-
4
-
-
0031325079
-
Sums of Cantor sets
-
MR1488319 98k:28009
-
Carlos A. Cabrelli, Kathryn E. Hare, and Ursula M. Molter. Sums of Cantor sets. Ergodic Theory Dynam. Systems, 17(6):1299-1313, 1997. MR1488319 (98k:28009)
-
(1997)
Ergodic Theory Dynam. Systems
, vol.17
, Issue.6
, pp. 1299-1313
-
-
Cabrelli, C.A.1
Hare, K.E.2
Molter, U.M.3
-
5
-
-
11244346792
-
On the Hausdorff fe-measure of Cantor sets
-
MR2105765 2005h:28013
-
Carlos Cabrelli, Franklin Mendivil, Ursula M. Molter, and Ronald Shonkwiler. On the Hausdorff fe-measure of Cantor sets. Pacific J. Math., 217(1):45-59, 2004. MR2105765 (2005h:28013)
-
(2004)
Pacific J. Math.
, vol.217
, Issue.1
, pp. 45-59
-
-
Cabrelli, C.1
Mendivil, F.2
Molter, U.M.3
Shonkwiler, R.4
-
6
-
-
85016075915
-
Hausdorff measure of p-Cantorsets
-
MR2177411 2006g:28012
-
C. Cabrelli, U. Molter, V. Paulauskas, and R. Shonkwiler. Hausdorff measure of p-Cantorsets. Real Anal. Exchange, 30(2):413-433, 2004/05. MR2177411 (2006g:28012)
-
(2004)
Real Anal. Exchange
, vol.30
, Issue.2
, pp. 413-433
-
-
Cabrelli, C.1
Molter, U.2
Paulauskas, V.3
Shonkwiler, R.4
-
7
-
-
0004116888
-
-
John Wiley & Sons Ltd., Chichester, MR1449135 99f:28013
-
Kenneth Falconer. Techniques in fractal geometry. John Wiley & Sons Ltd., Chichester, 1997. MR1449135 (99f:28013)
-
(1997)
Techniques in Fractal Geometry
-
-
Falconer, K.1
-
8
-
-
0242308838
-
The exact Hausdorff dimension functions of some Cantor sets
-
MR1975790 2004g:28009
-
L. Olsen. The exact Hausdorff dimension functions of some Cantor sets. Nonlinearity, 16(3):963-970, 2003. MR1975790 (2004g:28009)
-
(2003)
Nonlinearity
, vol.16
, Issue.3
, pp. 963-970
-
-
Olsen, L.1
-
9
-
-
0004122682
-
Hausdorff measures
-
Cambridge University Press, Cambridge, MR1692618 2000b:28009
-
C. A. Rogers. Hausdorff measures. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. MR1692618 (2000b:28009)
-
(1998)
Cambridge Mathematical Library
-
-
Rogers, C.A.1
-
10
-
-
84971877468
-
Two definitions of fractional dimension
-
MR633256 84d:28013
-
Claude Tricot, Jr. Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc., 91(1):57-74, 1982. MR633256 (84d:28013)
-
(1982)
Math. Proc. Cambridge Philos. Soc.
, vol.91
, Issue.1
, pp. 57-74
-
-
Tricot Jr., C.1
-
11
-
-
0003610310
-
-
Springer-Verlag, New York, MR1302173 95i:28005
-
Claude Tricot. Curves and fractal dimension. Springer-Verlag, New York, 1995. MR1302173 (95i:28005)
-
(1995)
Curves and Fractal Dimension
-
-
Tricot, C.1
-
12
-
-
84966224394
-
Packing measure, and its evaluation for a Brownian path
-
MR776398 87a:28002
-
S. James Taylor and Claude Tricot. Packing measure, and its evaluation for a Brownian path. Trans. Amer. Math. Soc., 288(2):679-699, 1985. MR776398 (87a:28002)
-
(1985)
Trans. Amer. Math. Soc.
, vol.288
, Issue.2
, pp. 679-699
-
-
Taylor, S.J.1
Tricot, C.2
|