메뉴 건너뛰기




Volumn 24, Issue 7, 2009, Pages 557-571

Spatiotemporal saliency for video classification

Author keywords

Spatiotemporal visual saliency; Video classification

Indexed keywords

CLASSIFICATION PERFORMANCE; COMPUTER VISION APPLICATIONS; CONSPICUITY; HETEROGENEOUS FEATURES; HUMAN VISUAL ATTENTION; OPTIMIZATION PROCESS; SALIENCY DETECTION; SALIENCY MEASURE; SALIENT REGIONS; SPATIOTEMPORAL SALIENCY; SPATIOTEMPORAL VISUAL SALIENCY; SPATIOTEMPORAL VOLUME; VIDEO CLASSIFICATION; VIDEO SEQUENCES; VISUAL INFORMATION;

EID: 67849088557     PISSN: 09235965     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.image.2009.03.002     Document Type: Article
Times cited : (27)

References (52)
  • 2
    • 59049093841 scopus 로고    scopus 로고
    • Contextual influences on saliency
    • Itti L., Rees G., and Tsotsos J. (Eds), Academic Press/Elsevier, New York
    • Torralba A. Contextual influences on saliency. In: Itti L., Rees G., and Tsotsos J. (Eds). Neurobiology of Attention (2005), Academic Press/Elsevier, New York 586-593
    • (2005) Neurobiology of Attention , pp. 586-593
    • Torralba, A.1
  • 3
    • 0037500818 scopus 로고    scopus 로고
    • Contextual priming for object detection
    • Torralba A. Contextual priming for object detection. Int. J. Comput. Vision 53 2 (2003) 169-191
    • (2003) Int. J. Comput. Vision , vol.53 , Issue.2 , pp. 169-191
    • Torralba, A.1
  • 4
    • 0018878142 scopus 로고
    • A feature integration theory of attention
    • Treisman A.M., and Gelade G. A feature integration theory of attention. Cognitive Psychol. 12 1 (1980) 97-136
    • (1980) Cognitive Psychol. , vol.12 , Issue.1 , pp. 97-136
    • Treisman, A.M.1    Gelade, G.2
  • 7
    • 0022388528 scopus 로고
    • Shifts in selective visual attention: towards the underlying neural circuitry
    • Koch C., and Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4 4 (1985) 219-227
    • (1985) Hum. Neurobiol. , vol.4 , Issue.4 , pp. 219-227
    • Koch, C.1    Ullman, S.2
  • 9
    • 34250091331 scopus 로고
    • Optical flow using spatiotemporal filters
    • Heeger D.J. Optical flow using spatiotemporal filters. Int. J. Comput. Vision (1988) 279-302
    • (1988) Int. J. Comput. Vision , pp. 279-302
    • Heeger, D.J.1
  • 10
    • 33750684017 scopus 로고    scopus 로고
    • Modeling attention to salient proto-objects
    • Walther D., and Koch C. Modeling attention to salient proto-objects. Neural Networks 19 (2006) 1395-1407
    • (2006) Neural Networks , vol.19 , pp. 1395-1407
    • Walther, D.1    Koch, C.2
  • 15
    • 0037047130 scopus 로고    scopus 로고
    • Rapid natural scene categorization in the near absence of attention
    • Li F.-F., VanRullen R., Koch C., and Perona P. Rapid natural scene categorization in the near absence of attention. Proc. Natl. Acad. Sci. 99 (2002) 8378-8383
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , pp. 8378-8383
    • Li, F.-F.1    VanRullen, R.2    Koch, C.3    Perona, P.4
  • 16
    • 0346219339 scopus 로고    scopus 로고
    • A dynamic model of how feature cues guide spatial attention
    • Hamker F.H. A dynamic model of how feature cues guide spatial attention. Vision Res. 44 (2004) 501-521
    • (2004) Vision Res. , vol.44 , pp. 501-521
    • Hamker, F.H.1
  • 18
    • 0032305049 scopus 로고    scopus 로고
    • H. Schneiderman, T. Kanade, Probabilistic modeling of local appearance and spatial relationships for object recognition. IEEE Conf. Comput. Vision Pattern Recognition, July 1998, pp. 45-51.
    • H. Schneiderman, T. Kanade, Probabilistic modeling of local appearance and spatial relationships for object recognition. IEEE Conf. Comput. Vision Pattern Recognition, July 1998, pp. 45-51.
  • 20
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • Nice, France
    • Laptev I., and Lindeberg T. Space-time interest points. Proc. ICCV'03 (2003), Nice, France 432-443
    • (2003) Proc. ICCV'03 , pp. 432-443
    • Laptev, I.1    Lindeberg, T.2
  • 24
    • 13344277943 scopus 로고    scopus 로고
    • K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, spatiotemporal visual attention architecture for video analysis, in: Proceedings of IEEE International Workshop On Multimedia Signal Processing (MMSP'04), 2004.
    • K. Rapantzikos, N. Tsapatsoulis, Y. Avrithis, spatiotemporal visual attention architecture for video analysis, in: Proceedings of IEEE International Workshop On Multimedia Signal Processing (MMSP'04), 2004.
  • 25
    • 34249885854 scopus 로고    scopus 로고
    • A bottom-up spatiotemporal visual attention model for video analysis
    • Rapantzikos K., Tsapatsoulis N., Avrithis Y., and Kollias S. A bottom-up spatiotemporal visual attention model for video analysis. IET Image Process. 1 2 (2007) 237-248
    • (2007) IET Image Process. , vol.1 , Issue.2 , pp. 237-248
    • Rapantzikos, K.1    Tsapatsoulis, N.2    Avrithis, Y.3    Kollias, S.4
  • 29
    • 4544260101 scopus 로고    scopus 로고
    • Automatic foveation for video compression using a neurobiological model of visual attention
    • Itti L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13 10 (2004) 1304-1318
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.10 , pp. 1304-1318
    • Itti, L.1
  • 30
    • 0034003645 scopus 로고    scopus 로고
    • A saliency-based search mechanism for overt and covert shifts of visual attention
    • Itti L., and Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 40 (2000) 1489-1506
    • (2000) Vision Res. , vol.40 , pp. 1489-1506
    • Itti, L.1    Koch, C.2
  • 31
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Itti L., Koch C., and Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20 11 (1998) 1254-1259
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 34
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms
    • Riedmiller M. Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Int. J. Comput. Stand Interfaces, Special Issue Neural Networks 16 (1994) 265-278
    • (1994) Int. J. Comput. Stand Interfaces, Special Issue Neural Networks , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 35
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., and Poggio T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2 11 (1999) 1019-1025
    • (1999) Nat. Neurosci. , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 36
    • 31144476148 scopus 로고    scopus 로고
    • Space-time image sequence analysis: object tunnels and occlusion volumes
    • Ristivojević M., and Konrad J. Space-time image sequence analysis: object tunnels and occlusion volumes. IEEE Trans. Image Process. 15 (2006) 364-376
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 364-376
    • Ristivojević, M.1    Konrad, J.2
  • 37
    • 0029772518 scopus 로고    scopus 로고
    • The robust estimation of multiple motions: parametric and piecewise-smooth flow fields
    • Black M.J., and Anandan P. The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. CVIU 63 1 (1996) 75-104
    • (1996) CVIU , vol.63 , Issue.1 , pp. 75-104
    • Black, M.J.1    Anandan, P.2
  • 40
    • 0018306059 scopus 로고
    • A threshold selection method from gray level histograms
    • Nobuyuki O. A threshold selection method from gray level histograms. IEEE Trans. Syst., Man Cybern. SMC-9 1 (1979)
    • (1979) IEEE Trans. Syst., Man Cybern. , vol.SMC-9 , Issue.1
    • Nobuyuki, O.1
  • 41
    • 84945243929 scopus 로고    scopus 로고
    • P. Groves, P. Bajcsy, Methodology for hyperspectral band and classification model selection, IEEE Workshop on Advances in Techniques for Analysis of Remotely sensed data, October 2003, pp. 120-128.
    • P. Groves, P. Bajcsy, Methodology for hyperspectral band and classification model selection, IEEE Workshop on Advances in Techniques for Analysis of Remotely sensed data, October 2003, pp. 120-128.
  • 44
    • 33644869932 scopus 로고    scopus 로고
    • Attention-based dynamic visual search using inner-scene similarity: algorithms and bounds
    • Avraham T., and Lindenbaum M. Attention-based dynamic visual search using inner-scene similarity: algorithms and bounds. IEEE Trans. Pattern Anal. Mach. Intell. 28 2 (2006) 251-264
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.2 , pp. 251-264
    • Avraham, T.1    Lindenbaum, M.2
  • 45
    • 67849123208 scopus 로고    scopus 로고
    • T.J. Williams, B.A. Draper, An Evaluation of Motion in Artificial Selective Attention, IEEE Conf. Comput. Vision Pattern Recognition (CVPRW'05), June 2005, pp. 85.
    • T.J. Williams, B.A. Draper, An Evaluation of Motion in Artificial Selective Attention, IEEE Conf. Comput. Vision Pattern Recognition (CVPRW'05), June 2005, pp. 85.
  • 46
    • 5044223783 scopus 로고    scopus 로고
    • Is bottom-up attention useful for object recognition?
    • July
    • U. Rutishauer, D. Walther, C. koch, P. Perona, Is bottom-up attention useful for object recognition?, CVPR'04, July 2004, pp. 37-44.
    • (2004) CVPR'04 , pp. 37-44
    • Rutishauer, U.1    Walther, D.2    koch, C.3    Perona, P.4
  • 49
    • 33745943239 scopus 로고    scopus 로고
    • Efficient visual event detection using volumetric features
    • October
    • Y. Ke, R. Sukthankar, M. Hebert, Efficient visual event detection using volumetric features, Int. Conf. Comput. Vision, vol. 1, October 2005, pp. 166-17.
    • (2005) Int. Conf. Comput. Vision , vol.1 , pp. 166-217
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 50
  • 51
    • 26844540415 scopus 로고    scopus 로고
    • A generic framework of user attention model and its application in video summarization
    • Ma Y.-F., Hua X.-S., Lu L., and Zhang H.-J. A generic framework of user attention model and its application in video summarization. IEEE Trans. Multimedia 7 5 (2005) 907-919
    • (2005) IEEE Trans. Multimedia , vol.7 , Issue.5 , pp. 907-919
    • Ma, Y.-F.1    Hua, X.-S.2    Lu, L.3    Zhang, H.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.