메뉴 건너뛰기




Volumn 20, Issue 2, 2009, Pages 235-254

Topology preservation measures in the visualization of manifold-type multidimensional data

Author keywords

Dimensionality reduction; Locally linear embedding; Manifold learning; Multidimensional data visualization; Topology preservation

Indexed keywords


EID: 67651225576     PISSN: 08684952     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (20)

References (25)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M., and P. Niyogi (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 0029267679 scopus 로고
    • An index of topological preservation for feature extraction
    • Bezdek, J.C., and N.R. Pal (1995). An index of topological preservation for feature extraction. Pattern Recognition, 28(3), 381-391.
    • (1995) Pattern Recognition , vol.28 , Issue.3 , pp. 381-391
    • Bezdek, J.C.1    Pal, N.R.2
  • 6
    • 53449100184 scopus 로고    scopus 로고
    • Hessian eigenmaps: New locally linear embedding techniques for highdimensional data
    • Donoho, D.L., and C. Grimes (2005). Hessian eigenmaps: New locally linear embedding techniques for highdimensional data. Proceedings of the National Academy of Sciences, 102(21), 7426-7431.
    • (2005) Proceedings of the National Academy of Sciences , vol.102 , Issue.21 , pp. 7426-7431
    • Donoho, D.L.1    Grimes, C.2
  • 7
    • 0035961983 scopus 로고    scopus 로고
    • Visualization of a set of parameters characterized by their correlation matrix
    • Dzemyda, G. (2001). Visualization of a set of parameters characterized by their correlation matrix. Computational Statistics and Data Analysis, 36(10), 15-30.
    • (2001) Computational Statistics and Data Analysis , vol.36 , Issue.10 , pp. 15-30
    • Dzemyda, G.1
  • 8
    • 27744440310 scopus 로고    scopus 로고
    • Cross-entropy embedding of high-dimensional data using the neural gas model
    • Estevez, P.A., C.J. Figueroa and K. Saito (2005). Cross-entropy embedding of high-dimensional data using the neural gas model. Neural Networks, 18(5-6), 727-737.
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 727-737
    • Estevez, P.A.1    Figueroa, C.J.2    Saito, K.3
  • 9
    • 0010725280 scopus 로고    scopus 로고
    • Quantifying neighbourhood preservation in topographic mappings
    • California Institute of Technology, Pasadena. pp
    • Goodhill, G.J., and T.J. Sejnowski (1996). Quantifying neighbourhood preservation in topographic mappings. In Proceedings of the Third Joint Symposium on Neural Computation, Vol. 6. California Institute of Technology, Pasadena. pp. 61-82.
    • (1996) Proceedings of the Third Joint Symposium on Neural Computation , vol.6 , pp. 61-82
    • Goodhill, G.J.1    Sejnowski, T.J.2
  • 11
    • 67651217688 scopus 로고    scopus 로고
    • Selection of the number of neighbours of each data point for the locally linear embedding algorithm
    • Karbauskaitė, R., O. Kurasova and G. Dzemyda (2007). Selection of the number of neighbours of each data point for the locally linear embedding algorithm. Information Technology and Control, 36(4), 359-364.
    • (2007) Information Technology and Control , vol.36 , Issue.4 , pp. 359-364
    • Karbauskaitė, R.1    Kurasova, O.2    Dzemyda, G.3
  • 13
    • 0034186913 scopus 로고    scopus 로고
    • Interactive visualization and analysis of hierarchical neural projections for data mining
    • Konig, A. (2000). Interactive visualization and analysis of hierarchical neural projections for data mining. IEEE Transactions on Neural Networks, 11(3), 615-624.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 615-624
    • Konig, A.1
  • 14
    • 26444545489 scopus 로고    scopus 로고
    • Kouropteva, O., O. Okun and M. Pietikainen (2005). Incremental locally linear embedding algorithm. In Proceedings of Fourteenth Scandinavian Conference on Image Analysis, Lecture Notes in Computer Science, 3540. Springer, Berlin. pp. 521-530.
    • Kouropteva, O., O. Okun and M. Pietikainen (2005). Incremental locally linear embedding algorithm. In Proceedings of Fourteenth Scandinavian Conference on Image Analysis, Lecture Notes in Computer Science, Vol. 3540. Springer, Berlin. pp. 521-530.
  • 18
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S.T., and L.K. Saul (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 19
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Saul, L.K., and S.T. Roweis (2003). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. J. Machine Learning Research, 4, 119-155.
    • (2003) J. Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J.B., V. Silva and J.C. Langford (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 22
    • 84958976659 scopus 로고    scopus 로고
    • Neighborhood preservation in nonlinear projection methods: An experimental study
    • Proceedings of the International Conference on Artificial Neural Networks ICANN, Springer, Berlin. pp
    • Venna, J., and S. Kaski (2001). Neighborhood preservation in nonlinear projection methods: An experimental study. In Proceedings of the International Conference on Artificial Neural Networks (ICANN), Lecture Notes In Computer Science, Vol. 2130. Springer, Berlin. pp. 485-491.
    • (2001) Lecture Notes In Computer Science , vol.2130 , pp. 485-491
    • Venna, J.1    Kaski, S.2
  • 23
    • 34147146900 scopus 로고    scopus 로고
    • Building connected neighborhood graphs for locally linear embedding
    • IEEE Computer Society, Washington. pp
    • Yang, L. (2006). Building connected neighborhood graphs for locally linear embedding. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR'06), Vol. 4. IEEE Computer Society, Washington. pp. 194-197.
    • (2006) Proceedings of the 18th International Conference on Pattern Recognition (ICPR'06) , vol.4 , pp. 194-197
    • Yang, L.1
  • 24
    • 60349128863 scopus 로고    scopus 로고
    • Growing locally linear embedding for manifold learning
    • Yin, J., D. Hu and Z. Zhou (2007). Growing locally linear embedding for manifold learning. Journal of Pattern Recognition Research, 2(1), 1-16.
    • (2007) Journal of Pattern Recognition Research , vol.2 , Issue.1 , pp. 1-16
    • Yin, J.1    Hu, D.2    Zhou, Z.3
  • 25
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment
    • Zhang, Z., and H. Zha (2004). Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment. SIAM Journal of Scientific Computing, 26(1), 313-338.
    • (2004) SIAM Journal of Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.