메뉴 건너뛰기




Volumn 17, Issue 4, 2009, Pages 405-418

A family of preconditioned iteratively regularized methods for nonlinear minimization

Author keywords

Gauss Newton method; Ill posed problem; Regularization; Stopping rule

Indexed keywords


EID: 67651181004     PISSN: 09280219     EISSN: None     Source Type: Journal    
DOI: 10.1515/JIIP.2009.027     Document Type: Article
Times cited : (2)

References (13)
  • 1
    • 0345413728 scopus 로고
    • Iterative methods for nonlinear operator equations without regularity, new approach
    • A. B. Bakushinsky, Iterative methods for nonlinear operator equations without regularity, new approach. Dokl. Russian Acad. Sci. 330 (1993), 282-284.
    • (1993) Dokl. Russian Acad. Sci. , vol.330 , pp. 282-284
    • Bakushinsky, A.B.1
  • 2
    • 28544436776 scopus 로고
    • Iterative methods without saturation for solving degenerate nonlinear operator equations
    • A. B. Bakushinsky, Iterative methods without saturation for solving degenerate nonlinear operator equations. Dokl. Russian Acad. Sci. 334 (1995), 7-8.
    • (1995) Dokl. Russian Acad. Sci. , vol.334 , pp. 7-8
    • Bakushinsky, A.B.1
  • 3
    • 17044393822 scopus 로고    scopus 로고
    • On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems
    • DOI 10.1081/NFA-200051631
    • A. B. Bakushinsky and A. Smirnova, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems. Numerical Functional Analysis and Optimization 26, 1 (2005), 35-48. (Pubitemid 40494000)
    • (2005) Numerical Functional Analysis and Optimization , vol.26 , Issue.1 , pp. 35-48
    • Bakushinsky, A.1    Smirnova, A.2
  • 4
    • 28544447290 scopus 로고    scopus 로고
    • A Lepskij-type stopping rule for regularized Newton methods
    • DOI 10.1088/0266-5611/21/6/011, PII S0266561105022355
    • F. Bauer and T. Hohage, A Lepskij-type stopping rule for regularized Newton methods. Inverse Problems 21 (2005), 1975-1991. (Pubitemid 41744510)
    • (2005) Inverse Problems , vol.21 , Issue.6 , pp. 1975-1991
    • Bauer, F.1    Hohage, T.2
  • 5
    • 33847617979 scopus 로고    scopus 로고
    • Regularizing Newton-kaczmarz methods for nonlinear ill-posed problems
    • DOI 10.1137/040613779
    • M. Burger and B. Kaltenbacher, Regularizing Newton-Kaczmarz methods for nonlinear illposed problems. SIAM J. Num Anal. 44, 1 (2006), 153-182. (Pubitemid 46352067)
    • (2006) SIAM Journal on Numerical Analysis , vol.44 , Issue.1 , pp. 153-182
    • Burger, M.1    Kaltenbacher, B.2
  • 6
    • 0345875999 scopus 로고    scopus 로고
    • A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions
    • P. Deuflhard, H. W. Engl, and O. Scherzer, A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inv. Probl. 14 (1998), 1081-1106. (Pubitemid 128557062)
    • (1998) Inverse Problems , vol.14 , Issue.5 , pp. 1081-1106
    • Deuflhard, P.1    Engl, H.W.2    Scherzer, O.3
  • 8
    • 0000670255 scopus 로고    scopus 로고
    • Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem
    • T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and inverse scattering problem. Inverse Problems 13 (1997), 1279-1299. (Pubitemid 127550009)
    • (1997) Inverse Problems , vol.13 , Issue.5 , pp. 1279-1299
    • Hohage, T.1
  • 9
    • 0000130782 scopus 로고    scopus 로고
    • Some Newton-type methods for the regularization of nonlinear ill-posed problems
    • B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems. Inverse Problems 13 (1997), 729-753. (Pubitemid 127549991)
    • (1997) Inverse Problems , vol.13 , Issue.3 , pp. 729-753
    • Kaltenbacher, B.1
  • 10
    • 33744516421 scopus 로고    scopus 로고
    • Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions
    • DOI 10.1088/0266-5611/22/3/023, PII S0266561106193685
    • B. Kaltenbacher and A. Neubauer, Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions. Inverse Problems 22, 3 (2006), 1105-1119. (Pubitemid 43814748)
    • (2006) Inverse Problems , vol.22 , Issue.3 , pp. 1105-1119
    • Kaltenbacher, B.1    Neubauer, A.2
  • 11
    • 0011037583 scopus 로고
    • Regularization of nonlinear illposed problems with closed operators
    • K. Kunisch and N. Ring, Regularization of nonlinear illposed problems with closed operators. Numerical Functional Analysis and Optimization 14 (1993), 389-404.
    • (1993) Numerical Functional Analysis and Optimization , vol.14 , pp. 389-404
    • Kunisch, K.1    Ring, N.2
  • 12
    • 0000012624 scopus 로고
    • On a problem of adaptive estimation in Gaussian white noise
    • O. V. Lepskij, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1990), 454-466.
    • (1990) Theory Probab. Appl. , vol.35 , pp. 454-466
    • Lepskij, O.V.1
  • 13
    • 34548679132 scopus 로고    scopus 로고
    • Convergence and application of a modified iteratively regularized Gauss-Newton algorithm
    • DOI 10.1088/0266-5611/23/4/011, PII S0266561107440485, 011
    • A. B. Smirnova, R. A. Renaut, and T. Khan, Convergence and application of a modified iteratively regularized Gauss-Newton algorithm. Inverse Problems 23, 4 (2007), 1547-1563. (Pubitemid 47411225)
    • (2007) Inverse Problems , vol.23 , Issue.4 , pp. 1547-1563
    • Smirnova, A.1    Renaut, R.A.2    Khan, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.