-
1
-
-
40849096540
-
-
M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502 (2008).
-
(2008)
Phys. Rev. Lett
, vol.100
, pp. 070502
-
-
Wolf, M.M.1
Verstraete, F.2
Hastings, M.B.3
Cirac, J.I.4
-
5
-
-
33646028459
-
-
L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys. Rev. D 34, 373 (1986);
-
(1986)
Phys. Rev. D
, vol.34
, pp. 373
-
-
Bombelli, L.1
Koul, R.K.2
Lee, J.3
Sorkin, R.D.4
-
8
-
-
67651198880
-
-
For reviews see: J. Preskill, arXiv:hep-th/9209058; S. Carlip, arXiv:0705.3024.
-
For reviews see: J. Preskill, arXiv:hep-th/9209058; S. Carlip, arXiv:0705.3024.
-
-
-
-
10
-
-
33750403659
-
-
Phys. Rev. D 14, 2460 (1976)
-
(1976)
Phys. Rev. D
, vol.14
, pp. 2460
-
-
-
12
-
-
67651182581
-
-
Kruskal (Schwarzschild) observers are defined by the vector field ∂ u (∂ t), where u (t) is the Kruskal (Schwarzschild) temporal coordinate [9, 7]. A Kruskal (Schwarzschild) state/mode refers to the state/mode described by the respective observers.
-
Kruskal (Schwarzschild) observers are defined by the vector field ∂ u (∂ t), where u (t) is the Kruskal (Schwarzschild) temporal coordinate [9, 7]. A Kruskal (Schwarzschild) state/mode refers to the state/mode described by the respective observers.
-
-
-
-
14
-
-
33749571046
-
-
D. Ahn, Phys. Rev. D 74, 084010 (2006).
-
(2006)
Phys. Rev. D
, vol.74
, pp. 084010
-
-
Ahn, D.1
-
17
-
-
67651192897
-
-
In this respect we notice that the degradation of correlations in a different type of two-mode entangled Kruskal state, i.e. a two-qubit-like Bell state |00〉, 11〉, as detected by Schwarzschild observers, have been recently studied [14, However, in that case it was not possible to frame the effect of black hole within the theory of entanglement redistribution, nor a degradation of classical correlations was observable
-
In this respect we notice that the degradation of correlations in a different type of two-mode entangled Kruskal state, i.e. a two-qubit-like Bell state |00〉 + |11〉, as detected by Schwarzschild observers, have been recently studied [14]. However, in that case it was not possible to frame the effect of black hole within the theory of entanglement redistribution, nor a degradation of classical correlations was observable.
-
-
-
-
20
-
-
33746347988
-
-
G. Adesso and F. Illuminati, Int. J. Quant. Inf 4, 383 (2006).
-
G. Adesso and F. Illuminati, Int. J. Quant. Inf 4, 383 (2006).
-
-
-
-
21
-
-
67651194698
-
-
The entropy of entanglement of a bipartite state |ψ〉 AB is defined as S(ρ A) = S(ρ B) = -TR[ρ A log(ρ A)], where ρ A (ρ B) is the reduced density matrix of subsystem A (B).
-
The entropy of entanglement of a bipartite state |ψ〉 AB is defined as S(ρ A) = S(ρ B) = -TR[ρ A log(ρ A)], where ρ A (ρ B) is the reduced density matrix of subsystem A (B).
-
-
-
-
24
-
-
67651200084
-
-
i|j = 1.
-
i|j = 1.
-
-
-
-
26
-
-
3042815639
-
-
M. M. Wolf, G. Giedke, O. Krüger, R. F. Werner, and J. I. Cirac, Phys. Rev. A 69, 052320 (2004);
-
(2004)
Phys. Rev. A
, vol.69
, pp. 052320
-
-
Wolf, M.M.1
Giedke, G.2
Krüger, O.3
Werner, R.F.4
Cirac, J.I.5
-
27
-
-
28844450098
-
-
G. Adesso and F. Illuminati, ibid. 72, 032334 (2005)
-
G. Adesso and F. Illuminati, ibid. 72, 032334 (2005)
-
-
-
-
30
-
-
19544375403
-
-
Phys. Rev. A 70, 022318 (2004).
-
(2004)
Phys. Rev. A
, vol.70
, pp. 022318
-
-
-
32
-
-
33748924334
-
-
P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006);
-
(2006)
Phys. Rev. A
, vol.74
, pp. 032326
-
-
Alsing, P.M.1
Fuentes-Schuller, I.2
Mann, R.B.3
Tessier, T.E.4
-
36
-
-
34548076077
-
-
G. Adesso, M. Ericsson, and F. Illuminati, Phys. Rev. A 76, 022315 (1007).
-
G. Adesso, M. Ericsson, and F. Illuminati, Phys. Rev. A 76, 022315 (1007).
-
-
-
-
37
-
-
67651198347
-
-
An infinitely entangled state, accompanied by unbounded energy, is unphysical. The appearance of such states is a well known issue in black hole physics, and only a satisfactory theory of quantum gravity might be able to renormalize these divergences by properly describing the physics of a black hole close to evaporation. In fact, Hawking's semiclassical calculations [7] within the formalism of quantum field theory in curved spacetimes [9, break down at the Planck scale. We can then safely conclude that our results concerning correlation loss and entanglement redistribution are physical at least for black hole masses M above the Planck mass Mp, 1 (in natural units, This corresponds to introducing a cutoff on the radiated energy and thus on the distributed entanglement. Quantitatively, from Fig. 3 and Eq, 5) one can see that, e.g. setting λ, 1/ 8π, the four-partite entanglement at the Planck scale is τ res ≈
-
res ≈ 45 ebits for ξ = 3, and so on. It increases with increasing squeezing ξ and decreasing frequency λ.
-
-
-
|