-
1
-
-
1842817380
-
Entropic uncertainty relations in quantum mechanics
-
L. Accardi, W. von Waldenfels Eds, Quantum Probability and Applications II, Springer, Berlin
-
I. Bialynicki-Birula, Entropic uncertainty relations in quantum mechanics, in: L. Accardi, W. von Waldenfels (Eds.), Quantum Probability and Applications II, Lecture Notes in Mathematics, vol. 1136, Springer, Berlin, 1985, p. 90.
-
(1985)
Lecture Notes in Mathematics
, vol.1136
, pp. 90
-
-
Bialynicki-Birula, I.1
-
5
-
-
54949113626
-
Fractional quaternion Fourier transform, convolution and correlation
-
Guanlei X., Xiaotong W., and Xiaogang X. Fractional quaternion Fourier transform, convolution and correlation. Signal Process. 88 10 (2008) 2511-2517
-
(2008)
Signal Process.
, vol.88
, Issue.10
, pp. 2511-2517
-
-
Guanlei, X.1
Xiaotong, W.2
Xiaogang, X.3
-
6
-
-
0027652515
-
Fractional Fourier transforms and their optical implementation (I)
-
Mendlovic D., and Ozaktas H.M. Fractional Fourier transforms and their optical implementation (I). J. Opt. Soc. Am. A 10 10 (1993) 1875-1881
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, Issue.10
, pp. 1875-1881
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
7
-
-
0035503193
-
An uncertainty principle for real signals in the fractional Fourier transform domain
-
Shinde S., and Vikram M.G. An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 49 11 (2001) 2545-2548
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.11
, pp. 2545-2548
-
-
Shinde, S.1
Vikram, M.G.2
-
8
-
-
0006486256
-
Uncertainty principle invariant under fractional Fourier transform
-
Mustard D. Uncertainty principle invariant under fractional Fourier transform. J. Aust. Math. Soc. Ser. B 33 (1991) 180-191
-
(1991)
J. Aust. Math. Soc. Ser. B
, vol.33
, pp. 180-191
-
-
Mustard, D.1
-
9
-
-
0000898117
-
Inequalities in Fourier analysis
-
Beckner W. Inequalities in Fourier analysis. Ann. Math., second Ser. 102 1 (1975) 159-182
-
(1975)
Ann. Math., second Ser.
, vol.102
, Issue.1
, pp. 159-182
-
-
Beckner, W.1
-
11
-
-
33750571650
-
Formulation of the uncertainty relations in terms of the Rényi entropies
-
Bialynicki-Birula I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74 (2006) 052101
-
(2006)
Phys. Rev. A
, vol.74
, pp. 052101
-
-
Bialynicki-Birula, I.1
-
12
-
-
0032295753
-
A unified framework for the fractional Fourier transform
-
Cariolaro G., Erseghe T., Kraniauskas P., and Laurenti N. A unified framework for the fractional Fourier transform. IEEE Trans. Signal Process. 46 12 (1998) 3206-3219
-
(1998)
IEEE Trans. Signal Process.
, vol.46
, Issue.12
, pp. 3206-3219
-
-
Cariolaro, G.1
Erseghe, T.2
Kraniauskas, P.3
Laurenti, N.4
-
13
-
-
0028546458
-
The fractional Fourier transform and time-frequency representations
-
Almeida L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42 11 (1994) 3084-3091
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, Issue.11
, pp. 3084-3091
-
-
Almeida, L.B.1
-
14
-
-
0002555664
-
Some fundamental questions of information theory
-
Rényi A. Some fundamental questions of information theory. MTA III Oszt. Közl. 251 (1960)
-
(1960)
MTA III Oszt. Közl.
, vol.251
-
-
Rényi, A.1
-
16
-
-
0039768601
-
The uncertainty principle: a mathematical survey
-
Folland G.B., and Sitaram A. The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3 3 (1997) 207-238
-
(1997)
J. Fourier Anal. Appl.
, vol.3
, Issue.3
, pp. 207-238
-
-
Folland, G.B.1
Sitaram, A.2
-
18
-
-
56049121172
-
The logarithmic, Heisenberg's and short-time uncertainty principles associated with fractional Fourier transform
-
Guanlei X., Xiaotong W., and Xiaogang X. The logarithmic, Heisenberg's and short-time uncertainty principles associated with fractional Fourier transform. Signal Process. 89 3 (2009) 339-343
-
(2009)
Signal Process.
, vol.89
, Issue.3
, pp. 339-343
-
-
Guanlei, X.1
Xiaotong, W.2
Xiaogang, X.3
-
19
-
-
0030413251
-
On the relationship between the Fourier and fractional Fourier transform
-
Zayed A.I. On the relationship between the Fourier and fractional Fourier transform. IEEE Signal Process. Lett. 3 12 (1996) 310-311
-
(1996)
IEEE Signal Process. Lett.
, vol.3
, Issue.12
, pp. 310-311
-
-
Zayed, A.I.1
-
20
-
-
58149503905
-
Three uncertainty relations for real signals associated with linear canonical transform
-
Guanlei X., Xiaotong W., and Xiaogang X. Three uncertainty relations for real signals associated with linear canonical transform. IET Signal Process. 3 1 (2009) 85-92
-
(2009)
IET Signal Process.
, vol.3
, Issue.1
, pp. 85-92
-
-
Guanlei, X.1
Xiaotong, W.2
Xiaogang, X.3
-
22
-
-
0141892675
-
Sampling and series expansion theorems for fractional Fourier and other transforms
-
Candan C., and Ozaktas H.M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process. 83 4 (2003) 2455-2457
-
(2003)
Signal Process.
, vol.83
, Issue.4
, pp. 2455-2457
-
-
Candan, C.1
Ozaktas, H.M.2
-
23
-
-
0034171723
-
Sampling-50 years after Shannon
-
UNSER M. Sampling-50 years after Shannon. Proc. IEEE 88 4 (2000) 569-587
-
(2000)
Proc. IEEE
, vol.88
, Issue.4
, pp. 569-587
-
-
UNSER, M.1
-
24
-
-
60349105111
-
-
Tongji University Press, Shanghai
-
Ling D.H. Advanced Mathematics (2001), Tongji University Press, Shanghai
-
(2001)
Advanced Mathematics
-
-
Ling, D.H.1
-
25
-
-
2442623404
-
The uncertainty principle: global, local, or both?
-
Loughlin P.J., and Cohen L. The uncertainty principle: global, local, or both?. IEEE Trans. Signal Process. 52 5 (2004) 1218-1227
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.5
, pp. 1218-1227
-
-
Loughlin, P.J.1
Cohen, L.2
|