-
1
-
-
0000956831
-
The law of anomalous numbers
-
Benford, F. 1938 The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551-572.
-
(1938)
Proc. Am. Philos. Soc
, vol.78
, pp. 551-572
-
-
Benford, F.1
-
2
-
-
12744263576
-
One-dimensional dynamical systems and Benford's law
-
doi:10.1090/S0002-9947-04-03455-5
-
Berger, A., Bunimovich, L. A. & Hill, T. P. 2005 One-dimensional dynamical systems and Benford's law. Trans. Am. Math. Soc. 357, 197-220. (doi:10.1090/S0002-9947-04-03455-5)
-
(2005)
Trans. Am. Math. Soc
, vol.357
, pp. 197-220
-
-
Berger, A.1
Bunimovich, L.A.2
Hill, T.P.3
-
3
-
-
0032647538
-
The Riemann zeta-zeros and eigenvalue asymptotics
-
doi:10.1137/S0036144598347497
-
Berry, M. V. & Keating, J. P. 1999 The Riemann zeta-zeros and eigenvalue asymptotics. SIAM Rev. 41, 236-266. (doi:10.1137/S0036144598347497)
-
(1999)
SIAM Rev
, vol.41
, pp. 236-266
-
-
Berry, M.V.1
Keating, J.P.2
-
4
-
-
34547992651
-
Riemann zeta functions and quantum chaos
-
doi:10.1143/PTPS.166.19
-
Bogomolny, E. 2007 Riemann zeta functions and quantum chaos. Prog. Theor. Phys. Suppl. 166, 19-44. (doi:10.1143/PTPS.166.19)
-
(2007)
Prog. Theor. Phys. Suppl
, vol.166
, pp. 19-44
-
-
Bogomolny, E.1
-
5
-
-
0034608812
-
A pseudo zeta function and the distribution of primes
-
doi:10.1073/pnas.97.14.7697
-
Chernoff, P. R. 2000 A pseudo zeta function and the distribution of primes. Proc. Natl Acad. Sci. USA 97, 7697-7699. (doi:10.1073/pnas.97.14.7697)
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 7697-7699
-
-
Chernoff, P.R.1
-
6
-
-
12444279519
-
Prime numbers and probability
-
Cramér, H. 1935 Prime numbers and probability. Skand. Mat. Kongr. 8, 107-115.
-
(1935)
Skand. Mat. Kongr
, vol.8
, pp. 107-115
-
-
Cramér, H.1
-
7
-
-
0002417821
-
The distribution of leading digits and uniform distribution mod 1
-
doi:10.1214/aop/ 1176995891
-
Diaconis, P. 1977 The distribution of leading digits and uniform distribution mod 1. Ann. Probab. 5, 72-81. (doi:10.1214/aop/ 1176995891)
-
(1977)
Ann. Probab
, vol.5
, pp. 72-81
-
-
Diaconis, P.1
-
10
-
-
0000030933
-
On the probability that a random integer has initial digit A
-
doi:10.2307/2314636
-
Flehinger, B. J. 1966 On the probability that a random integer has initial digit A. Am. Math. Mon. 73, 1056-1061. (doi:10.2307/2314636)
-
(1966)
Am. Math. Mon
, vol.73
, pp. 1056-1061
-
-
Flehinger, B.J.1
-
11
-
-
43449086031
-
The primes contain arbitrary long arithmetic progressions
-
Green, B. & Tao, T. 2008 The primes contain arbitrary long arithmetic progressions. Ann. Math. 167, 481-547.
-
(2008)
Ann. Math
, vol.167
, pp. 481-547
-
-
Green, B.1
Tao, T.2
-
13
-
-
33746062963
-
The random sieve
-
Hawkins, D. 1957 The random sieve. Math. Mag. 31, 1-3.
-
(1957)
Math. Mag
, vol.31
, pp. 1-3
-
-
Hawkins, D.1
-
14
-
-
84966250122
-
Base-invariance implies Benford's law
-
doi:10.2307/2160815
-
Hill, T. P. 1995a Base-invariance implies Benford's law. Proc. Am. Math. Soc. 123, 887-895. (doi:10.2307/2160815)
-
(1995)
Proc. Am. Math. Soc
, vol.123
, pp. 887-895
-
-
Hill, T.P.1
-
15
-
-
84972541029
-
A statistical derivation of the significant-digit law
-
Hill, T. P. 1995b A statistical derivation of the significant-digit law. Stat. Sci. 10, 354-363.
-
(1995)
Stat. Sci
, vol.10
, pp. 354-363
-
-
Hill, T.P.1
-
16
-
-
0001718673
-
The first-digit phenomenon
-
Hill, T. P. 1996 The first-digit phenomenon. Am. Sci. 86, 358-363.
-
(1996)
Am. Sci
, vol.86
, pp. 358-363
-
-
Hill, T.P.1
-
17
-
-
0004245874
-
-
Zurich, Switzerland: AB Academic Publishers pp
-
Hlawka, E. 1984 The theory of uniform distribution. Zurich, Switzerland: AB Academic Publishers pp. 122-123.
-
(1984)
The theory of uniform distribution
, pp. 122-123
-
-
Hlawka, E.1
-
21
-
-
0034556676
-
Survival distributions satisfying Benford's law
-
doi:10.2307/2685773
-
Leemis, L. M., Schmeiser, W. & Evans, D. L. 2000 Survival distributions satisfying Benford's law. Am. Stat. 54, 236-241. (doi:10.2307/2685773)
-
(2000)
Am. Stat
, vol.54
, pp. 236-241
-
-
Leemis, L.M.1
Schmeiser, W.2
Evans, D.L.3
-
22
-
-
0000539930
-
Stochastic multiplicative processes with reset events
-
doi:10.1103/PhysRevE.59.4945
-
Manrubia, S. C. & Zanette, D. H. 1999 Stochastic multiplicative processes with reset events. Phys. Rev. E 59, 4945-4948. (doi:10.1103/PhysRevE.59.4945)
-
(1999)
Phys. Rev. E
, vol.59
, pp. 4945-4948
-
-
Manrubia, S.C.1
Zanette, D.H.2
-
23
-
-
84885991139
-
Detecting attempted election theft: Vote counts, voting machines and Benford's law
-
See http
-
Mebane Jr, W. R. 2006 Detecting attempted election theft: vote counts, voting machines and Benford's law. In Annual Meeting of the Midwest Political Science Association, Palmer House, Chicago, IL, 20-23 April 2006. See http://macht.arts.cornell.edu/wrm1/mw06.pdf.
-
(2006)
Annual Meeting of the Midwest Political Science Association, Palmer House, Chicago, IL, 20-23 April 2006
-
-
Mebane Jr, W.R.1
-
24
-
-
33645139599
-
Benford's law, values of L-functions and the 3x+1 problem
-
doi:10.4064/aa120-3-4
-
Miller, S. J. & Kontorovich, A. 2005 Benford's law, values of L-functions and the 3x+1 problem. Acta Arithmetica 120, 269-297. (doi:10.4064/aa120-3-4)
-
(2005)
Acta Arithmetica
, vol.120
, pp. 269-297
-
-
Miller, S.J.1
Kontorovich, A.2
-
26
-
-
0003038640
-
Note on the frequency of use of the different digits in natural numbers
-
doi:10.2307/2369148
-
Newcomb, S. 1881 Note on the frequency of use of the different digits in natural numbers. Am. J. Math. 4, 39-40. (doi:10.2307/2369148)
-
(1881)
Am. J. Math
, vol.4
, pp. 39-40
-
-
Newcomb, S.1
-
28
-
-
34548737045
-
Benford's law applied to hydrological data-results and relevance to other geophysical data
-
doi:10.1007/s11004-007-9109-5
-
Nigrini, M. J. & Miller, S. J. 2007 Benford's law applied to hydrological data-results and relevance to other geophysical data. Math. Geol. 39, 469-490. (doi:10.1007/s11004-007-9109-5)
-
(2007)
Math. Geol
, vol.39
, pp. 469-490
-
-
Nigrini, M.J.1
Miller, S.J.2
-
29
-
-
0034825396
-
Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf
-
doi:10.1016/S0378-4371 (00) 00633-6
-
Pietronero, L., Tossati, E., Tossati, V. & Vespignani, A. 2001 Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A 293, 297-304. (doi:10.1016/S0378-4371 (00) 00633-6)
-
(2001)
Physica A
, vol.293
, pp. 297-304
-
-
Pietronero, L.1
Tossati, E.2
Tossati, V.3
Vespignani, A.4
-
30
-
-
0000109243
-
On the distribution of first significant digits
-
doi:10.1214/aoms/1177704862
-
Pinkham, R. S. 1961 On the distribution of first significant digits. Ann. Math. Stat. 32, 1223-1230. (doi:10.1214/aoms/1177704862)
-
(1961)
Ann. Math. Stat
, vol.32
, pp. 1223-1230
-
-
Pinkham, R.S.1
-
31
-
-
0001295471
-
The first digit problem
-
doi:10.2307/2319349
-
Raimi, R. A. 1976 The first digit problem. Am. Math. Mon. 83, 521-538. (doi:10.2307/2319349)
-
(1976)
Am. Math. Mon
, vol.83
, pp. 521-538
-
-
Raimi, R.A.1
-
33
-
-
3343014432
-
A visual display of some properties of the distribution of primes
-
doi:10.2307/2312588
-
Stein, M. L., Ulam, S. M. & Wells, M. B. 1964 A visual display of some properties of the distribution of primes. Am. Math. Mon. 71, 516-520. (doi:10.2307/2312588)
-
(1964)
Am. Math. Mon
, vol.71
, pp. 516-520
-
-
Stein, M.L.1
Ulam, S.M.2
Wells, M.B.3
-
35
-
-
67650823179
-
Initial digits for the sequence of primes
-
doi:10. 2307/2316536
-
Withney, R. E. 1972 Initial digits for the sequence of primes. Am. Math. Mon. 79, 150-152. (doi:10. 2307/2316536)
-
(1972)
Am. Math. Mon
, vol.79
, pp. 150-152
-
-
Withney, R.E.1
|