메뉴 건너뛰기




Volumn 39, Issue 11, 2009, Pages 1003-1024

Better Naive Bayes classification for high-precision spam detection

Author keywords

Cascaded models; Naive Bayes; Spam filtering

Indexed keywords

AGGREGATION FUNCTIONS; CASCADED MODELS; COLLABORATIVE FILTERING; DECISION THRESHOLD; DETECTION RATES; E-MAIL SPAM; HIGH-PRECISION; INTERNET USERS; MACHINE-LEARNING; NAIVE BAYES; NAIVE BAYES CLASSIFICATION; POOR PERFORMANCE; POTENTIAL SOLUTIONS; SPAM DETECTION; SPAM FILTERING; TERM WEIGHT; TREE-BASED;

EID: 67650834914     PISSN: 00380644     EISSN: 1097024X     Source Type: Journal    
DOI: 10.1002/spe.925     Document Type: Article
Times cited : (38)

References (52)
  • 1
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • Chemnitz, DE, eds, Springer: Heidelberg, DE
    • Lewis DD. Naive (Bayes) at forty: The independence assumption in information retrieval. Proceedings of ECML-98, 10th European Conference on Machine Learning, Chemnitz, DE, vol. 1398, Nédellec C, Rouveirol C (eds.). Springer: Heidelberg, DE, 1998; 4-15.
    • (1998) Proceedings of ECML-98, 10th European Conference on Machine Learning , vol.1398 , pp. 4-15
    • Lewis, D.D.1
  • 7
    • 1542634595 scopus 로고    scopus 로고
    • A statistical approach to the spam problem
    • Robinson G. A statistical approach to the spam problem. Linux Journal 2003; 2003(107):3.
    • (2003) Linux Journal , vol.2003 , Issue.107 , pp. 3
    • Robinson, G.1
  • 10
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 1997; 29(2-3):103-130.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 20
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann Publishers Inc, San Francisco, CA, U.S.A
    • Hall MA. Correlation-based feature selection for discrete and numeric class machine learning. ICML'00: Proceedings of the Seventeenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc.: San Francisco, CA, U.S.A., 2000; 359-366.
    • (2000) ICML'00: Proceedings of the Seventeenth International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 26
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996; 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 28
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich TG. Ensemble Methods in Machine Learning (Lecture Notes in Computer Science, 1857). Springer: Berlin, 2000; 1-15.
    • Dietterich TG. Ensemble Methods in Machine Learning (Lecture Notes in Computer Science, vol. 1857). Springer: Berlin, 2000; 1-15.
  • 31
    • 84867577175 scopus 로고    scopus 로고
    • Elkan C. The foundations of cost-sensitive learning. IJCAI, Seattle, Washington, U.S.A., 2001; 973-978.
    • Elkan C. The foundations of cost-sensitive learning. IJCAI, Seattle, Washington, U.S.A., 2001; 973-978.
  • 35
    • 67650802960 scopus 로고    scopus 로고
    • Cormack G, Lynam T. TREC 2005 spam track overview. Proceedings of TREC 2005-The Fourteenth Text REtrieval Conference, 2005.
    • Cormack G, Lynam T. TREC 2005 spam track overview. Proceedings of TREC 2005-The Fourteenth Text REtrieval Conference, 2005.
  • 36
    • 67650818887 scopus 로고    scopus 로고
    • The TREC 2006 spam filter evaluation track
    • Cormack G. The TREC 2006 spam filter evaluation track. Virus Bulletin, vol. 1, 2006.
    • (2006) Virus Bulletin , vol.1
    • Cormack, G.1
  • 37
    • 37349034569 scopus 로고    scopus 로고
    • Instance-based spam filtering using svm nearest neighbor classifier
    • Key West, FL
    • Blanzieri E. Instance-based spam filtering using svm nearest neighbor classifier. Proceedings of FLAIRS 2007, Key West, FL, 2007; 441-442.
    • (2007) Proceedings of FLAIRS 2007 , pp. 441-442
    • Blanzieri, E.1
  • 38
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 2006; 27(8):861-874.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 42
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006; 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 46
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • Gama J, Brazdil P. Cascade generalization. Machine Learning 2000; 41(3):315-343.
    • (2000) Machine Learning , vol.41 , Issue.3 , pp. 315-343
    • Gama, J.1    Brazdil, P.2
  • 48
    • 34547681971 scopus 로고    scopus 로고
    • A novel cascade ensemble classifier system with a high recognition performance on handwritten digits
    • Zhang P, Bui TD, Suen CY. A novel cascade ensemble classifier system with a high recognition performance on handwritten digits. Pattern Recognition 2007; 40(12):3415-3429.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3415-3429
    • Zhang, P.1    Bui, T.D.2    Suen, C.Y.3
  • 49
    • 0038647814 scopus 로고    scopus 로고
    • Hierarchical classification and feature reduction for fast face detection with support vector machines
    • Heisele B, Serre T, Prentice S, Poggio T. Hierarchical classification and feature reduction for fast face detection with support vector machines. Pattern Recognition 2003; 36(9):2007-2017.
    • (2003) Pattern Recognition , vol.36 , Issue.9 , pp. 2007-2017
    • Heisele, B.1    Serre, T.2    Prentice, S.3    Poggio, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.