-
1
-
-
0000885387
-
Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
-
Eichhorn, R., Linz, S. J., & Hänggi, P. (1998). Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows. Physical Review E, 58, 7151-7164.
-
(1998)
Physical Review E
, vol.58
, pp. 7151-7164
-
-
Eichhorn, R.1
Linz, S.J.2
Hänggi, P.3
-
2
-
-
0036028187
-
Simple polynomial classes of chaotic jerky dynamics
-
Eichhorn, R., Linz, S. J., & Hänggi, P. (2002). Simple polynomial classes of chaotic jerky dynamics. Chaos, Solitons, & Fractals, 13, 1-15.
-
(2002)
Chaos, Solitons, & Fractals
, vol.13
, pp. 1-15
-
-
Eichhorn, R.1
Linz, S.J.2
Hänggi, P.3
-
3
-
-
0001305336
-
Question 38. What is the simplest jerk function that gives chaos?
-
Gottlieb, H. P. W. (1996). Question 38. What is the simplest jerk function that gives chaos? American Journal of Physics, 64, 525.
-
(1996)
American Journal of Physics
, vol.64
, pp. 525
-
-
Gottlieb, H.P.W.1
-
4
-
-
22144491187
-
-
New York: Academic Press
-
Hirsch, M. W., Smale, S., & Devaney, R. (2004). Differential equations, dynamical systems and an introduction to chaos. New York: Academic Press.
-
(2004)
Differential equations, dynamical systems and an introduction to chaos
-
-
Hirsch, M.W.1
Smale, S.2
Devaney, R.3
-
5
-
-
0001640825
-
Chaotic behavior of multidimensional difference equations
-
H, O. Peitgen & H, O. Walther Eds
-
Kaplan, J., & Yorke, J. (1979). Chaotic behavior of multidimensional difference equations. In H. -O. Peitgen & H. -O. Walther (Eds.), Functional differential equations and approximation of fixed points, Lecture Notes in Mathematics, Vol. 730 pp. 228-237.
-
(1979)
Functional differential equations and approximation of fixed points, Lecture Notes in Mathematics
, vol.730
, pp. 228-237
-
-
Kaplan, J.1
Yorke, J.2
-
6
-
-
0031478493
-
-
Berlin: Springer. Linz, S. J. (1997). Nonlinear models and jerky motion. American Journal of Physics, 65, 523-526.
-
Berlin: Springer. Linz, S. J. (1997). Nonlinear models and jerky motion. American Journal of Physics, 65, 523-526.
-
-
-
-
7
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Science, 20, 130-141.
-
(1963)
Journal of Atmospheric Science
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
8
-
-
0004154108
-
-
Seattle: University of Washington Press
-
Lorenz, E. N. (1993). The essence of chaos. Seattle: University of Washington Press.
-
(1993)
The essence of chaos
-
-
Lorenz, E.N.1
-
9
-
-
0001686852
-
A thermally excited non-linear oscillator
-
Moore, D. W., & Spiegel, E. A. (1966). A thermally excited non-linear oscillator. Astrophysical Journal, 143, 871-887.
-
(1966)
Astrophysical Journal
, vol.143
, pp. 871-887
-
-
Moore, D.W.1
Spiegel, E.A.2
-
10
-
-
49549126801
-
An equation for continuous chaos
-
Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57, 397-398.
-
(1976)
Physics Letters A
, vol.57
, pp. 397-398
-
-
Rössler, O.E.1
-
11
-
-
84985456277
-
Continuous chaos - four prototype equations
-
Rössler, O. E. (1979). Continuous chaos - four prototype equations. Annals New York Academy of Sciences, 316, 376-392.
-
(1979)
Annals New York Academy of Sciences
, vol.316
, pp. 376-392
-
-
Rössler, O.E.1
-
12
-
-
0000670926
-
Finite amplitude free convection as an initial value problem - I
-
Saltzman, B. (1962). Finite amplitude free convection as an initial value problem - I. Journal of Atmospheric Science, 19, 329-341.
-
(1962)
Journal of Atmospheric Science
, vol.19
, pp. 329-341
-
-
Saltzman, B.1
-
13
-
-
84947648871
-
The time rate of change of acceleration
-
Schot, S.H. (1978). The time rate of change of acceleration. American Journal of Physics, 46, 1090-1094.
-
(1978)
American Journal of Physics
, vol.46
, pp. 1090-1094
-
-
Schot, S.H.1
-
15
-
-
33751555569
-
Some simple chaotic flows
-
Sprott, J. C. (1994). Some simple chaotic flows. Physical Review E, 50, R647-650.
-
(1994)
Physical Review E
, vol.50
-
-
Sprott, J.C.1
-
16
-
-
0041322255
-
Simplest dissipative chaotic flow
-
Sprott, J. C. (1997). Simplest dissipative chaotic flow. Physics Letters A, 228, 271-274.
-
(1997)
Physics Letters A
, vol.228
, pp. 271-274
-
-
Sprott, J.C.1
-
17
-
-
0034645889
-
A new class of chaotic circuit
-
Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A, 266, 19-23.
-
(2000)
Physics Letters A
, vol.266
, pp. 19-23
-
-
Sprott, J.C.1
-
19
-
-
34848878319
-
Chaos, 17
-
033124-1-6
-
Sprott, J. C. (2007). Maximally complex simple attractors. Chaos, 17, 033124-1-6.
-
(2007)
-
-
Sprott, J.C.1
-
20
-
-
0041634867
-
Non-chaotic behaviour in three-dimensional quadratic systems
-
Zhang, F., & Heidel, J. (1997). Non-chaotic behaviour in three-dimensional quadratic systems. Nonlinearity, 10, 1289-1303.
-
(1997)
Nonlinearity
, vol.10
, pp. 1289-1303
-
-
Zhang, F.1
Heidel, J.2
|