메뉴 건너뛰기




Volumn 13, Issue 3, 2009, Pages 271-278

Simplifications of the Lorenz Attractor

Author keywords

Attractor; Chaos; Lorenz; Lyapunov exponent

Indexed keywords


EID: 67650832150     PISSN: 10900578     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (31)

References (20)
  • 1
    • 0000885387 scopus 로고    scopus 로고
    • Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
    • Eichhorn, R., Linz, S. J., & Hänggi, P. (1998). Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows. Physical Review E, 58, 7151-7164.
    • (1998) Physical Review E , vol.58 , pp. 7151-7164
    • Eichhorn, R.1    Linz, S.J.2    Hänggi, P.3
  • 3
    • 0001305336 scopus 로고    scopus 로고
    • Question 38. What is the simplest jerk function that gives chaos?
    • Gottlieb, H. P. W. (1996). Question 38. What is the simplest jerk function that gives chaos? American Journal of Physics, 64, 525.
    • (1996) American Journal of Physics , vol.64 , pp. 525
    • Gottlieb, H.P.W.1
  • 6
    • 0031478493 scopus 로고    scopus 로고
    • Berlin: Springer. Linz, S. J. (1997). Nonlinear models and jerky motion. American Journal of Physics, 65, 523-526.
    • Berlin: Springer. Linz, S. J. (1997). Nonlinear models and jerky motion. American Journal of Physics, 65, 523-526.
  • 8
    • 0004154108 scopus 로고
    • Seattle: University of Washington Press
    • Lorenz, E. N. (1993). The essence of chaos. Seattle: University of Washington Press.
    • (1993) The essence of chaos
    • Lorenz, E.N.1
  • 9
    • 0001686852 scopus 로고
    • A thermally excited non-linear oscillator
    • Moore, D. W., & Spiegel, E. A. (1966). A thermally excited non-linear oscillator. Astrophysical Journal, 143, 871-887.
    • (1966) Astrophysical Journal , vol.143 , pp. 871-887
    • Moore, D.W.1    Spiegel, E.A.2
  • 10
    • 49549126801 scopus 로고
    • An equation for continuous chaos
    • Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57, 397-398.
    • (1976) Physics Letters A , vol.57 , pp. 397-398
    • Rössler, O.E.1
  • 11
    • 84985456277 scopus 로고
    • Continuous chaos - four prototype equations
    • Rössler, O. E. (1979). Continuous chaos - four prototype equations. Annals New York Academy of Sciences, 316, 376-392.
    • (1979) Annals New York Academy of Sciences , vol.316 , pp. 376-392
    • Rössler, O.E.1
  • 12
    • 0000670926 scopus 로고
    • Finite amplitude free convection as an initial value problem - I
    • Saltzman, B. (1962). Finite amplitude free convection as an initial value problem - I. Journal of Atmospheric Science, 19, 329-341.
    • (1962) Journal of Atmospheric Science , vol.19 , pp. 329-341
    • Saltzman, B.1
  • 13
    • 84947648871 scopus 로고
    • The time rate of change of acceleration
    • Schot, S.H. (1978). The time rate of change of acceleration. American Journal of Physics, 46, 1090-1094.
    • (1978) American Journal of Physics , vol.46 , pp. 1090-1094
    • Schot, S.H.1
  • 15
    • 33751555569 scopus 로고
    • Some simple chaotic flows
    • Sprott, J. C. (1994). Some simple chaotic flows. Physical Review E, 50, R647-650.
    • (1994) Physical Review E , vol.50
    • Sprott, J.C.1
  • 16
    • 0041322255 scopus 로고    scopus 로고
    • Simplest dissipative chaotic flow
    • Sprott, J. C. (1997). Simplest dissipative chaotic flow. Physics Letters A, 228, 271-274.
    • (1997) Physics Letters A , vol.228 , pp. 271-274
    • Sprott, J.C.1
  • 17
    • 0034645889 scopus 로고    scopus 로고
    • A new class of chaotic circuit
    • Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A, 266, 19-23.
    • (2000) Physics Letters A , vol.266 , pp. 19-23
    • Sprott, J.C.1
  • 19
    • 34848878319 scopus 로고    scopus 로고
    • Chaos, 17
    • 033124-1-6
    • Sprott, J. C. (2007). Maximally complex simple attractors. Chaos, 17, 033124-1-6.
    • (2007)
    • Sprott, J.C.1
  • 20
    • 0041634867 scopus 로고    scopus 로고
    • Non-chaotic behaviour in three-dimensional quadratic systems
    • Zhang, F., & Heidel, J. (1997). Non-chaotic behaviour in three-dimensional quadratic systems. Nonlinearity, 10, 1289-1303.
    • (1997) Nonlinearity , vol.10 , pp. 1289-1303
    • Zhang, F.1    Heidel, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.