-
1
-
-
0003871449
-
-
[Albeverio et al. 2005] 2nd ed., AMS Chelsea Publishing, Providence, RI, MR 2005g:81001 Zbl 1078.81003
-
[Albeverio et al. 2005] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models in quantum mechanics, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005. MR 2005g:81001 Zbl 1078.81003
-
(2005)
Solvable models in quantum mechanics
-
-
Albeverio, S.1
Gesztesy, F.2
Høegh-Krohn, R.3
Holden, H.4
-
2
-
-
0347206840
-
Semiclassical states of nonlinear Schrödinger equations with bounded potentials
-
[Ambrosetti et al. 1996] MR 98e:35150 Zbl 0872.35098
-
[Ambrosetti et al. 1996] A. Ambrosetti, M. Badiale, and S. Cingolani, “Semiclassical states of nonlinear Schrödinger equations with bounded potentials”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7:3 (1996), 155–160. MR 98e:35150 Zbl 0872.35098
-
(1996)
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl
, vol.7
, Issue.3
, pp. 155-160
-
-
Ambrosetti, A.1
Badiale, M.2
Cingolani, S.3
-
3
-
-
84882298701
-
-
[Boyd 2008] 3rd ed., Academic Press, Burlington, MA
-
[Boyd 2008] R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, Burlington, MA, 2008.
-
(2008)
Nonlinear Optics
-
-
Boyd, R. W.1
-
4
-
-
0002189021
-
Scattering for the nonlinear Schrödinger equation: states that are close to a soliton
-
[Buslaev and Perelrman 1992] Translation in St. Petersburg Math. J. 4 (1993) 6, 1111–1142. MR 94b:35256 Zbl 0853.35112
-
[Buslaev and Perelrman 1992] V. S. Buslaev and G. S. Perelrman, “Scattering for the nonlinear Schrödinger equation: states that are close to a soliton”, Algebra i Analiz 4:6 (1992), 63–102. Translation in St. Petersburg Math. J. 4 (1993), no. 6, 1111–1142. MR 94b:35256 Zbl 0853.35112
-
(1992)
Algebra i Analiz
, vol.4
, Issue.6
, pp. 63-102
-
-
Buslaev, V. S.1
Perelrman, G. S.2
-
5
-
-
0002779183
-
On the stability of solitary waves for nonlinear Schrödinger equations
-
[Buslaev and Perelrman 1995] in edited by N. N. Uralrtseva, Amer. Math. Soc. Transl. Ser. 2 164, Amer. Math. Soc., Providence, RI, MR 96e:35157 Zbl 0841.35108
-
[Buslaev and Perelrman 1995] V. S. Buslaev and G. S. Perelrman, “On the stability of solitary waves for nonlinear Schrödinger equations”, pp. 75–98 in Nonlinear evolution equations, edited by N. N. Uralrtseva, Amer. Math. Soc. Transl. Ser. 2 164, Amer. Math. Soc., Providence, RI, 1995. MR 96e:35157 Zbl 0841.35108
-
(1995)
Nonlinear evolution equations
, pp. 75-98
-
-
Buslaev, V. S.1
Perelrman, G. S.2
-
6
-
-
0347495345
-
On asymptotic stability of solitary waves for nonlinear Schrödinger equations
-
[Buslaev and Sulem 2003] MR 2004d:35229 Zbl 1028.35139
-
[Buslaev and Sulem 2003] V. S. Buslaev and C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire 20:3 (2003), 419–475. MR 2004d:35229 Zbl 1028.35139
-
(2003)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.20
, Issue.3
, pp. 419-475
-
-
Buslaev, V. S.1
Sulem, C.2
-
7
-
-
5444256656
-
Semilinear Schrödinger equations
-
[Cazenave 2003] New York Uni versity Courant Institute of Mathematical Sciences, New York, MR 2004j:35266 Zbl 1055.35003
-
[Cazenave 2003] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, New York Uni- versity Courant Institute of Mathematical Sciences, New York, 2003. MR 2004j:35266 Zbl 1055.35003
-
(2003)
Courant Lecture Notes in Mathematics
, vol.10
-
-
Cazenave, T.1
-
8
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
[Cazenave and Lions 1982] MR 84i:81015 Zbl 0513.35007
-
[Cazenave and Lions 1982] T. Cazenave and P.-L. Lions, “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Comm. Math. Phys. 85:4 (1982), 549–561. MR 84i:81015 Zbl 0513.35007
-
(1982)
Comm. Math. Phys
, vol.85
, Issue.4
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.-L.2
-
9
-
-
0003719998
-
-
[Cohen-Tannoudji et al. 1992] Wiley-Interscience, New York
-
[Cohen-Tannoudji et al. 1992] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Pro- cesses and Applications, Wiley-Interscience, New York, 1992.
-
(1992)
Atom-Photon Interactions: Basic Pro- cesses and Applications
-
-
Cohen-Tannoudji, C.1
Dupont-Roc, J.2
Grynberg, G.3
-
10
-
-
85125866341
-
Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math. 54:9 (2001), 1110–1145. “Erratum
-
[Cuccagna 2001] in Comm. Pure Appl. Math. 58 (2005) 1, 147. MR 2002g:35193 Zbl 1031.35129
-
[Cuccagna 2001] S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math. 54:9 (2001), 1110–1145. “Erratum”, in Comm. Pure Appl. Math. 58 (2005), no. 1, 147. MR 2002g:35193 Zbl 1031.35129
-
-
-
Cuccagna, S.1
-
11
-
-
0347633259
-
On asymptotic stability of ground states of NLS
-
[Cuccagna 2003] MR 2004k:35348 Zbl 1084.35089
-
[Cuccagna 2003] S. Cuccagna, “On asymptotic stability of ground states of NLS”, Rev. Math. Phys. 15:8 (2003), 877–903. MR 2004k:35348 Zbl 1084.35089
-
(2003)
Rev. Math. Phys
, vol.15
, Issue.8
, pp. 877-903
-
-
Cuccagna, S.1
-
12
-
-
44149106578
-
On asymptotic stability in energy space of ground states of NLS in 1D
-
[Cuccagna 2008] MR 2422523 Zbl 1138.35062 arXiv 0711.4192
-
[Cuccagna 2008] S. Cuccagna, “On asymptotic stability in energy space of ground states of NLS in 1D”, J. Differential Equa- tions 245:3 (2008), 653–691. MR 2422523 Zbl 1138.35062 arXiv 0711.4192
-
(2008)
J. Differential Equa- tions
, vol.245
, Issue.3
, pp. 653-691
-
-
Cuccagna, S.1
-
13
-
-
53349167536
-
On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations
-
[Cuccagna and Mizumachi 2008]
-
[Cuccagna and Mizumachi 2008] S. Cuccagna and T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys. 284:1 (2008), 51–77.
-
(2008)
Comm. Math. Phys
, vol.284
, Issue.1
, pp. 51-77
-
-
Cuccagna, S.1
Mizumachi, T.2
-
14
-
-
10244243814
-
Spectra of positive and negative energies in the linearized NLS problem
-
[Cuccagna et al. 2005] MR 2005k:35374 Zbl 1064.35181
-
[Cuccagna et al. 2005] S. Cuccagna, D. Pelinovsky, and V. Vougalter, “Spectra of positive and negative energies in the linearized NLS problem”, Comm. Pure Appl. Math. 58:1 (2005), 1–29. MR 2005k:35374 Zbl 1064.35181
-
(2005)
Comm. Pure Appl. Math
, vol.58
, Issue.1
, pp. 1-29
-
-
Cuccagna, S.1
Pelinovsky, D.2
Vougalter, V.3
-
15
-
-
28344456247
-
Parametric resonance of ground states in the nonlinear Schrödinger equation
-
[Cuccagna et al. 2006] MR 2007j:35212 Zbl 1081.35101
-
[Cuccagna et al. 2006] S. Cuccagna, E. Kirr, and D. Pelinovsky, “Parametric resonance of ground states in the nonlinear Schrödinger equation”, J. Differential Equations 220:1 (2006), 85–120. MR 2007j:35212 Zbl 1081.35101
-
(2006)
J. Differential Equations
, vol.220
, Issue.1
, pp. 85-120
-
-
Cuccagna, S.1
Kirr, E.2
Pelinovsky, D.3
-
16
-
-
79551496714
-
Derivation of the nonlinear Schrödinger equation from a many body Coulomb system
-
s and, [Erdo˝s and Yau 2001] MR 2004c:82075 Zbl 0727.35103
-
[Erdo˝s and Yau 2001] L. Erdo˝s and H.-T. Yau, “Derivation of the nonlinear Schrödinger equation from a many body Coulomb system”, Adv. Theor. Math. Phys. 5:6 (2001), 1169–1205. MR 2004c:82075 Zbl 0727.35103
-
(2001)
Adv. Theor. Math. Phys
, vol.5
, Issue.6
, pp. 1169-1205
-
-
Erdo, L.1
Yau, H.-T.2
-
17
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
-
[Floer and Weinstein 1986] MR 88d:35169 Zbl 0613.35076
-
[Floer and Weinstein 1986] A. Floer and A. Weinstein, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential”, J. Funct. Anal. 69:3 (1986), 397–408. MR 88d:35169 Zbl 0613.35076
-
(1986)
J. Funct. Anal
, vol.69
, Issue.3
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
18
-
-
7244229514
-
Solitary wave dynamics in an external potential
-
[Fröhlich et al. 2004] MR 2005h:35320 Zbl 1075.35075
-
[Fröhlich et al. 2004] J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal, “Solitary wave dynamics in an external potential”, Comm. Math. Phys. 250:3 (2004), 613–642. MR 2005h:35320 Zbl 1075.35075
-
(2004)
Comm. Math. Phys
, vol.250
, Issue.3
, pp. 613-642
-
-
Fröhlich, J.1
Gustafson, S.2
Jonsson, B. L. G.3
Sigal, I. M.4
-
19
-
-
34249902487
-
Perturbation expansion and N th order Fermi golden rule of the nonlinear Schrödinger equations
-
[Gang 2007] 053509, 23. MR 2008g:47146 Zbl 1144.81430
-
[Gang 2007] Z. Gang, “Perturbation expansion and N th order Fermi golden rule of the nonlinear Schrödinger equations”, J. Math. Phys. 48:5 (2007), 053509, 23. MR 2008g:47146 Zbl 1144.81430
-
(2007)
J. Math. Phys
, vol.48
, Issue.5
-
-
Gang, Z.1
-
20
-
-
27944461890
-
Asymptotic stability of nonlinear Schrödinger equations with potential
-
[Gang and Sigal 2005] MR 2006j:35220 Zbl 1086.82013
-
[Gang and Sigal 2005] Z. Gang and I. M. Sigal, “Asymptotic stability of nonlinear Schrödinger equations with potential”, Rev. Math. Phys. 17:10 (2005), 1143–1207. MR 2006j:35220 Zbl 1086.82013
-
(2005)
Rev. Math. Phys
, vol.17
, Issue.10
, pp. 1143-1207
-
-
Gang, Z.1
Sigal, I. M.2
-
21
-
-
33846839312
-
On soliton dynamics in nonlinear Schrödinger equations
-
[Gang and Sigal 2006] MR 2007k:35458 Zbl 1110.35084
-
[Gang and Sigal 2006] Z. Gang and I. M. Sigal, “On soliton dynamics in nonlinear Schrödinger equations”, Geom. Funct. Anal. 16:6 (2006), 1377–1390. MR 2007k:35458 Zbl 1110.35084
-
(2006)
Geom. Funct. Anal
, vol.16
, Issue.6
, pp. 1377-1390
-
-
Gang, Z.1
Sigal, I. M.2
-
22
-
-
34948859449
-
Relaxation of solitons in nonlinear Schrödinger equations with potential
-
[Gang and Sigal 2007] MR 2008k:35441 Zbl 1126.35065
-
[Gang and Sigal 2007] Z. Gang and I. M. Sigal, “Relaxation of solitons in nonlinear Schrödinger equations with potential”, Adv. Math. 216:2 (2007), 443–490. MR 2008k:35441 Zbl 1126.35065
-
(2007)
Adv. Math
, vol.216
, Issue.2
, pp. 443-490
-
-
Gang, Z.1
Sigal, I. M.2
-
23
-
-
7544222374
-
Dispersive estimates for Schrödinger operators in dimensions one and three
-
[Goldberg and Schlag 2004] MR 2005g:81339 Zbl 1086.81077
-
[Goldberg and Schlag 2004] M. Goldberg and W. Schlag, “Dispersive estimates for Schrödinger operators in dimensions one and three”, Comm. Math. Phys. 251:1 (2004), 157–178. MR 2005g:81339 Zbl 1086.81077
-
(2004)
Comm. Math. Phys
, vol.251
, Issue.1
, pp. 157-178
-
-
Goldberg, M.1
Schlag, W.2
-
24
-
-
0000468151
-
Stability theory of solitary waves in the presence of symmetry. I
-
[Grillakis et al. 1987] MR 88g:35169 Zbl 0656.35122
-
[Grillakis et al. 1987] M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal. 74:1 (1987), 160–197. MR 88g:35169 Zbl 0656.35122
-
(1987)
J. Funct. Anal
, vol.74
, Issue.1
, pp. 160-197
-
-
Grillakis, M.1
Shatah, J.2
Strauss, W.3
-
25
-
-
12344303082
-
Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves
-
[Gustafson et al. 2004] MR 2005g:35268 Zbl 1072.35167
-
[Gustafson et al. 2004] S. Gustafson, K. Nakanishi, and T.-P. Tsai, “Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves”, Int. Math. Res. Not. 66 (2004), 3559–3584. MR 2005g:35268 Zbl 1072.35167
-
(2004)
Int. Math. Res. Not
, vol.66
, pp. 3559-3584
-
-
Gustafson, S.1
Nakanishi, K.2
Tsai, T.-P.3
-
26
-
-
33751583390
-
Double wells
-
[Harrell 1980] MR 81j:81010 Zbl 0445.35036
-
[Harrell 1980] E. M. Harrell, “Double wells”, Comm. Math. Phys. 75:3 (1980), 239–261. MR 81j:81010 Zbl 0445.35036
-
(1980)
Comm. Math. Phys
, vol.75
, Issue.3
, pp. 239-261
-
-
Harrell, E. M.1
-
27
-
-
0003828742
-
Introduction to spectral theory: With applications to Schrödinger opera- tors
-
[Hislop and Sigal 1996] Springer, New York, MR 98h:47003 Zbl 0855.47002
-
[Hislop and Sigal 1996] P. D. Hislop and I. M. Sigal, Introduction to spectral theory: With applications to Schrödinger opera- tors, Applied Mathematical Sciences 113, Springer, New York, 1996. MR 98h:47003 Zbl 0855.47002
-
(1996)
Applied Mathematical Sciences
, vol.113
-
-
Hislop, P. D.1
Sigal, I. M.2
-
28
-
-
43049116018
-
Slow soliton interaction with delta impurities
-
[Holmer and Zworski 2007] MR 2008k:35446 Zbl 1137.35060
-
[Holmer and Zworski 2007] J. Holmer and M. Zworski, “Slow soliton interaction with delta impurities”, J. Mod. Dyn. 1:4 (2007), 689–718. MR 2008k:35446 Zbl 1137.35060
-
(2007)
J. Mod. Dyn
, vol.1
, Issue.4
, pp. 689-718
-
-
Holmer, J.1
Zworski, M.2
-
29
-
-
84972568716
-
Spectral properties of Schrödinger operators and time-decay of the wave functions
-
[Jensen and Kato 1979] MR 81b:35079 Zbl 0448.35080
-
[Jensen and Kato 1979] A. Jensen and T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J. 46:3 (1979), 583–611. MR 81b:35079 Zbl 0448.35080
-
(1979)
Duke Math. J
, vol.46
, Issue.3
, pp. 583-611
-
-
Jensen, A.1
Kato, T.2
-
30
-
-
0035527615
-
Parametric excited Hamiltonian partial differential equations
-
[Kirr and Weinstein 2001] MR 2002f:35067 Zbl 1097.35524
-
[Kirr and Weinstein 2001] E. Kirr and M. I. Weinstein, “Parametric excited Hamiltonian partial differential equations”, SIAM J. Math. Anal. 33:1 (2001), 16–52. MR 2002f:35067 Zbl 1097.35524
-
(2001)
SIAM J. Math. Anal
, vol.33
, Issue.1
, pp. 16-52
-
-
Kirr, E.1
Weinstein, M. I.2
-
31
-
-
27144508052
-
Nonlinearly Induced Relaxation to the Ground State in a Two-Level System
-
[Mandelik et al. 2005]
-
[Mandelik et al. 2005] D. Mandelik, Y. Lahini, and Y. Silberberg, “Nonlinearly Induced Relaxation to the Ground State in a Two-Level System”, Phys. Rev. Lett. 95 (2005), 073902.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 073902
-
-
Mandelik, D.1
Lahini, Y.2
Silberberg, Y.3
-
32
-
-
17744383456
-
-
[Moloney and Newell 2004] Westview Press, Boulder, MR 2004g:78002 Zbl 1054.78001
-
[Moloney and Newell 2004] J. Moloney and A. Newell, Nonlinear optics, Westview Press, Boulder, 2004. MR 2004g:78002 Zbl 1054.78001
-
(2004)
Nonlinear optics
-
-
Moloney, J.1
Newell, A.2
-
33
-
-
84946264643
-
Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V )a
-
[Oh 1988] MR 90d:35063a Zbl 0702.35228
-
[Oh 1988] Y.-G. Oh, “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V )a ”, Comm. Partial Differential Equations 13:12 (1988), 1499–1519. MR 90d:35063a Zbl 0702.35228
-
(1988)
Comm. Partial Differential Equations
, vol.13
, Issue.12
, pp. 1499-1519
-
-
Oh, Y.-G.1
-
34
-
-
0001322178
-
Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations
-
[Pillet and Wayne 1997] MR 99b:35193 Zbl 0890.35016
-
[Pillet and Wayne 1997] C.-A. Pillet and C. E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Differential Equations 141:2 (1997), 310–326. MR 99b:35193 Zbl 0890.35016
-
(1997)
J. Differential Equations
, vol.141
, Issue.2
, pp. 310-326
-
-
Pillet, C.-A.1
Wayne, C. E.2
-
35
-
-
0039687341
-
Local decay of scattering solutions to Schrödinger’s equation
-
[Rauch 1978] MR 58 #14590 Zbl 0381.35023
-
[Rauch 1978] J. Rauch, “Local decay of scattering solutions to Schrödinger’s equation”, Comm. Math. Phys. 61:2 (1978), 149–168. MR 58 #14590 Zbl 0381.35023
-
(1978)
Comm. Math. Phys
, vol.61
, Issue.2
, pp. 149-168
-
-
Rauch, J.1
-
36
-
-
0003687441
-
-
[Reed and Simon 1979] Academic Press [Harcourt Brace Jovanovich Publishers], New York, MR 80m:81085 Zbl 0405.47007
-
[Reed and Simon 1979] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979. MR 80m:81085 Zbl 0405.47007
-
(1979)
Methods of modern mathematical physics. III. Scattering theory
-
-
Reed, M.1
Simon, B.2
-
37
-
-
0000173206
-
On the bound states of the nonlinear Schrödinger equation with a linear potential
-
[Rose and Weinstein 1988] MR 89e:35139 Zbl 0694.35202
-
[Rose and Weinstein 1988] H. A. Rose and M. I. Weinstein, “On the bound states of the nonlinear Schrödinger equation with a linear potential”, Phys. D 30:1-2 (1988), 207–218. MR 89e:35139 Zbl 0694.35202
-
(1988)
Phys. D
, vol.30
, Issue.1-2
, pp. 207-218
-
-
Rose, H. A.1
Weinstein, M. I.2
-
38
-
-
21144461943
-
Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions
-
[Sigal 1993] MR 94d:35012 Zbl 0780.35106
-
[Sigal 1993] I. M. Sigal, “Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions”, Comm. Math. Phys. 153:2 (1993), 297–320. MR 94d:35012 Zbl 0780.35106
-
(1993)
Comm. Math. Phys
, vol.153
, Issue.2
, pp. 297-320
-
-
Sigal, I. M.1
-
39
-
-
0000301325
-
Multichannel nonlinear scattering for nonintegrable equations
-
[Soffer and Weinstein 1990] MR 91h:35303 Zbl 0721.35082
-
[Soffer and Weinstein 1990] A. Soffer and M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys. 133:1 (1990), 119–146. MR 91h:35303 Zbl 0721.35082
-
(1990)
Comm. Math. Phys
, vol.133
, Issue.1
, pp. 119-146
-
-
Soffer, A.1
Weinstein, M. I.2
-
40
-
-
0001641727
-
Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data
-
[Soffer and Weinstein 1992] MR 93i:35137 Zbl 0795.35073
-
[Soffer and Weinstein 1992] A. Soffer and M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations 98:2 (1992), 376–390. MR 93i:35137 Zbl 0795.35073
-
(1992)
J. Differential Equations
, vol.98
, Issue.2
, pp. 376-390
-
-
Soffer, A.1
Weinstein, M. I.2
-
41
-
-
0032218492
-
Time dependent resonance theory
-
[Soffer and Weinstein 1998] MR 99k:81329 Zbl 0917.35023
-
[Soffer and Weinstein 1998] A. Soffer and M. I. Weinstein, “Time dependent resonance theory”, Geom. Funct. Anal. 8:6 (1998), 1086–1128. MR 99k:81329 Zbl 0917.35023
-
(1998)
Geom. Funct. Anal
, vol.8
, Issue.6
, pp. 1086-1128
-
-
Soffer, A.1
Weinstein, M. I.2
-
42
-
-
0033460613
-
Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations
-
[Soffer and Weinstein 1999] MR 2000k:37119 Zbl 0910.35107
-
[Soffer and Weinstein 1999] A. Soffer and M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math. 136:1 (1999), 9–74. MR 2000k:37119 Zbl 0910.35107
-
(1999)
Invent. Math
, vol.136
, Issue.1
, pp. 9-74
-
-
Soffer, A.1
Weinstein, M. I.2
-
43
-
-
12144269880
-
Selection of the ground state for nonlinear Schrödinger equations
-
[Soffer and Weinstein 2004] MR 2005g:81095 Zbl 1111.81313
-
[Soffer and Weinstein 2004] A. Soffer and M. I. Weinstein, “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys. 16:8 (2004), 977–1071. MR 2005g:81095 Zbl 1111.81313
-
(2004)
Rev. Math. Phys
, vol.16
, Issue.8
, pp. 977-1071
-
-
Soffer, A.1
Weinstein, M. I.2
-
44
-
-
28844490887
-
Theory of nonlinear dispersive waves and selection of the ground state
-
[Soffer and Weinstein 2005]
-
[Soffer and Weinstein 2005] A. Soffer and M. I. Weinstein, “Theory of nonlinear dispersive waves and selection of the ground state”, Phys. Rev. Lett. 95 (2005), 213905.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 213905
-
-
Soffer, A.1
Weinstein, M. I.2
-
45
-
-
0003405464
-
The nonlinear Schrödinger equation. Self-focusing and wave collapse
-
[Sulem and Sulem 1999] Springer, New York, MR 2000f:35139 Zbl 0928.35157
-
[Sulem and Sulem 1999] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences 139, Springer, New York, 1999. MR 2000f:35139 Zbl 0928.35157
-
(1999)
Applied Mathematical Sciences
, vol.139
-
-
Sulem, C.1
Sulem, P.-L.2
-
46
-
-
85061876398
-
Why are solitons stable?
-
[Tao 2008] preprint, To appear in Bulletin of the American Mathematical Society. arXiv 0802.2408
-
[Tao 2008] T. Tao, “Why are solitons stable?”, preprint, 2008. To appear in Bulletin of the American Mathematical Society. arXiv 0802.2408
-
(2008)
-
-
Tao, T.1
-
47
-
-
0038349584
-
Asymptotic dynamics of nonlinear Schrödinger equations with many bound states
-
[Tsai 2003] MR 2004h:35212 Zbl 1038.35128
-
[Tsai 2003] T.-P. Tsai, “Asymptotic dynamics of nonlinear Schrödinger equations with many bound states”, J. Differential Equations 192:1 (2003), 225–282. MR 2004h:35212 Zbl 1038.35128
-
(2003)
J. Differential Equations
, vol.192
, Issue.1
, pp. 225-282
-
-
Tsai, T.-P.1
-
48
-
-
0036221809
-
Asymptotic dynamics of nonlinear Schrödinger equations: resonance-domi- nated and dispersion-dominated solutions
-
[Tsai and Yau 2002a] MR 2002i:35182 Zbl 1031.35137
-
[Tsai and Yau 2002a] T.-P. Tsai and H.-T. Yau, “Asymptotic dynamics of nonlinear Schrödinger equations: resonance-domi- nated and dispersion-dominated solutions”, Comm. Pure Appl. Math. 55:2 (2002), 153–216. MR 2002i:35182 Zbl 1031.35137
-
(2002)
Comm. Pure Appl. Math
, vol.55
, Issue.2
, pp. 153-216
-
-
Tsai, T.-P.1
Yau, H.-T.2
-
49
-
-
0038707659
-
Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data
-
[Tsai and Yau 2002b] MR 2004m:35254 Zbl 1033.81034
-
[Tsai and Yau 2002b] T.-P. Tsai and H.-T. Yau, “Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data”, Adv. Theor. Math. Phys. 6:1 (2002), 107–139. MR 2004m:35254 Zbl 1033.81034
-
(2002)
Adv. Theor. Math. Phys
, vol.6
, Issue.1
, pp. 107-139
-
-
Tsai, T.-P.1
Yau, H.-T.2
-
50
-
-
0036350836
-
Relaxation of excited states in nonlinear Schrödinger equations
-
[Tsai and Yau 2002c] MR 2004i:35292 Zbl 1011.35120
-
[Tsai and Yau 2002c] T.-P. Tsai and H.-T. Yau, “Relaxation of excited states in nonlinear Schrödinger equations”, Int. Math. Res. Not. 31 (2002), 1629–1673. MR 2004i:35292 Zbl 1011.35120
-
(2002)
Int. Math. Res. Not
, vol.31
, pp. 1629-1673
-
-
Tsai, T.-P.1
Yau, H.-T.2
-
51
-
-
0034349544
-
Center manifold for nonintegrable nonlinear Schrödinger equations on the line
-
[Weder 2000] MR 2001m:37168 Zbl 1003.37045
-
[Weder 2000] R. Weder, “Center manifold for nonintegrable nonlinear Schrödinger equations on the line”, Comm. Math. Phys. 215:2 (2000), 343–356. MR 2001m:37168 Zbl 1003.37045
-
(2000)
Comm. Math. Phys
, vol.215
, Issue.2
, pp. 343-356
-
-
Weder, R.1
-
52
-
-
0000686130
-
Modulational stability of ground states of nonlinear Schrödinger equations
-
[Weinstein 1985] MR 86i:35130 Zbl 0583.35028
-
[Weinstein 1985] M. I. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal. 16:3 (1985), 472–491. MR 86i:35130 Zbl 0583.35028
-
(1985)
SIAM J. Math. Anal
, vol.16
, Issue.3
, pp. 472-491
-
-
Weinstein, M. I.1
-
53
-
-
84990553584
-
Lyapunov stability of ground states of nonlinear dispersive evolution equations
-
[Weinstein 1986] MR 87f:35023 Zbl 0594.35005
-
[Weinstein 1986] M. I. Weinstein, “Lyapunov stability of ground states of nonlinear dispersive evolution equations”, Comm. Pure Appl. Math. 39:1 (1986), 51–67. MR 87f:35023 Zbl 0594.35005
-
(1986)
Comm. Pure Appl. Math
, vol.39
, Issue.1
, pp. 51-67
-
-
Weinstein, M. I.1
-
54
-
-
67649352746
-
Extended Hamiltonian systems
-
[Weinstein 2006] in edited by B. Hasselblatt and A. Katok, Elsevier B. Amsterdam, MR 2007b:35049 Zbl 1130.37398
-
[Weinstein 2006] M. I. Weinstein, “Extended Hamiltonian systems”, pp. 1135–1153 in Handbook of dynamical systems, vol. 1B, edited by B. Hasselblatt and A. Katok, Elsevier B. V., Amsterdam, 2006. MR 2007b:35049 Zbl 1130.37398
-
(2006)
Handbook of dynamical systems
, vol.1B
, pp. 1135-1153
-
-
Weinstein, M. I.1
|