메뉴 건너뛰기




Volumn 22, Issue 5, 2009, Pages 1063-1089

On the 2D zakharov system with L2 Schrödinger data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 67650751537     PISSN: 09517715     EISSN: 13616544     Source Type: Journal    
DOI: 10.1088/0951-7715/22/5/007     Document Type: Article
Times cited : (128)

References (22)
  • 1
    • 0010993678 scopus 로고
    • Equations of Langmuir turbulence and nonlinear Schrödinger equation: Smoothness and approximation
    • Added H and Added S 1988 Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation J. Funct. Anal. 79 183-210
    • (1988) J. Funct. Anal. , vol.79 , Issue.1 , pp. 183-210
    • Added, H.1    Added, S.2
  • 3
    • 25144454046 scopus 로고    scopus 로고
    • A non-linear generalisation of the Loomis-Whitney inequality and applications
    • Bennett J, Carbery A and Wright J 2005 A non-linear generalisation of the Loomis-Whitney inequality and applications Math. Res. Lett. 12 443-57 (Pubitemid 41353377)
    • (2005) Mathematical Research Letters , vol.12 , Issue.4 , pp. 443-457
    • Bennett, J.1    Carbery, A.2    Wright, J.3
  • 4
    • 0000044382 scopus 로고    scopus 로고
    • Periodic Korteweg de Vries equation with measures as initial data
    • Bourgain J 1997 Periodic Korteweg de Vries equation with measures as initial data Selecta Math. (N.S.) 3 115-59
    • (1997) Selecta Math. (N.S.) , vol.3 , Issue.2 , pp. 115-159
    • Bourgain, J.1
  • 5
    • 0000193318 scopus 로고    scopus 로고
    • Refinements of Strichartz' Inequality and Applications to 2D-NLS with Critical Nonlinearity
    • Bourgain J 1998 Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity Int. Math. Res. Not. 1998 253-83 (Pubitemid 128505684)
    • (1998) International Mathematics Research Notices , Issue.5 , pp. 253-283
    • Bourgain, J.1
  • 6
    • 17144439672 scopus 로고    scopus 로고
    • On wellposedness of the Zakharov system
    • Bourgain J and Colliander J E 1996 On wellposedness of the Zakharov system Int. Math. Res. Not. 1996 515-46
    • (1996) Int. Math. Res. Not. , vol.1996 , Issue.11 , pp. 515-546
    • Bourgain, J.1    Colliander, J.E.2
  • 9
    • 67650754033 scopus 로고    scopus 로고
    • Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems
    • Colliander J E, Holmer J and Tzirakis N 2008 Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems Trans. Am. Math. Soc. 360 4619-38
    • (2008) Trans. Am. Math. Soc. , vol.360 , Issue.9 , pp. 4619-4638
    • Colliander, J.E.1    Holmer, J.2    Tzirakis, N.3
  • 12
    • 0031574596 scopus 로고    scopus 로고
    • On the Cauchy problem for the Zakharov system
    • DOI 10.1006/jfan.1997.3148, PII S0022123697931487
    • Ginibre J, Tsutsumi Y and Velo G 1997 On the Cauchy problem for the Zakharov system J. Funct. Anal. 151 384-436 (Pubitemid 127172654)
    • (1997) Journal of Functional Analysis , vol.151 , Issue.2 , pp. 384-436
    • Ginibre, J.1    Tsutsumi, Y.2    Velo, G.3
  • 13
    • 34249772634 scopus 로고
    • Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two: II
    • Glangetas L and Merle F 1994 Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two: II Commun. Math. Phys. 160 349-89
    • (1994) Commun. Math. Phys. , vol.160 , Issue.2 , pp. 349-389
    • Glangetas, L.1    Merle, F.2
  • 14
    • 21344478851 scopus 로고
    • Existence of self-similar blow-up solutions for Zakharov equation in dimension two: I
    • Glangetas L and Merle F 1994 Existence of self-similar blow-up solutions for Zakharov equation in dimension two: I Commun. Math. Phys. 160 173-215
    • (1994) Commun. Math. Phys. , vol.160 , Issue.1 , pp. 173-215
    • Glangetas, L.1    Merle, F.2
  • 15
    • 33847023877 scopus 로고    scopus 로고
    • Local ill-posedness of the 1D Zakharov system
    • Holmer J 2007 Local ill-posedness of the 1D Zakharov system Electron. J. Diff. Eqns 2007 22pp (electronic)
    • (2007) Electron. J. Diff. Eqns , vol.2007
    • Holmer, J.1
  • 17
    • 0001289565 scopus 로고
    • An inequality related to the isoperimetric inequality
    • Loomis L H and Whitney H 1949 An inequality related to the isoperimetric inequality Bull. Am. Math. Soc 55 961-2
    • (1949) Bull. Am. Math. Soc , vol.55 , Issue.10 , pp. 961-962
    • Loomis, L.H.1    Whitney, H.2
  • 18
    • 42449103930 scopus 로고    scopus 로고
    • Energy convergence for singular limits of Zakharov type systems
    • Masmoudi N and Nakanishi K 2008 Energy convergence for singular limits of Zakharov type systems Invent. Math. 172 535-83
    • (2008) Invent. Math. , vol.172 , Issue.3 , pp. 535-583
    • Masmoudi, N.1    Nakanishi, K.2
  • 19
    • 0003278684 scopus 로고    scopus 로고
    • Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations
    • Merle F 1998 Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations Proc. Int. Congress of Mathematicians (Berlin, Germany, 1998) vol III pp 57-66 (electronic)
    • (1998) Proc. Int. Congress of Mathematicians , vol.3 , pp. 57-66
    • Merle, F.1
  • 20
    • 84972498389 scopus 로고
    • The nonlinear Schrödinger limit and the initial layer of the Zakharov equations
    • Ozawa T and Tsutsumi Y 1992 The nonlinear Schrödinger limit and the initial layer of the Zakharov equations Diff. Integral Eqns 5 721-45
    • (1992) Diff. Integral Eqns , vol.5 , pp. 721-745
    • Ozawa, T.1    Tsutsumi, Y.2
  • 21
    • 0000014949 scopus 로고
    • The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence
    • Schochet S H and Weinstein M I 1986 The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence Commun. Math. Phys. 106 569-80
    • (1986) Commun. Math. Phys. , vol.106 , Issue.4 , pp. 569-580
    • Schochet, S.H.1    Weinstein, M.I.2
  • 22
    • 0001596227 scopus 로고
    • Collapse of Langmuir waves
    • Zakharov V E 1972 Collapse of Langmuir waves Sov. Phys.-JETP 35 908-14
    • (1972) Sov. Phys.-JETP , vol.35 , pp. 908-914
    • Zakharov, V.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.