-
1
-
-
0005332561
-
Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents
-
North-Holland Amsterdam
-
Almgren, F.J. Jr.: Dirichlet's problem for multiple valued functions and the regularity of mass minimizing integral currents. In: Minimal Submanifolds and Geodesics. Proc. Japan-United States Sem., Tokyo, 1977, pp. 1-6. North-Holland, Amsterdam (1979)
-
(1979)
Minimal Submanifolds and Geodesics Proc. Japan-United States Sem. Event Tokyo 1977
, pp. 1-6
-
-
Almgren, Jr.F.J.1
-
2
-
-
84967774571
-
Variational problems with two phases and their free boundaries
-
H.W. Alt L.A. Caffarelli A. Friedman 1984 Variational problems with two phases and their free boundaries Trans. Am. Math. Soc. 282 2 431 461
-
(1984)
Trans. Am. Math. Soc.
, vol.282
, Issue.2
, pp. 431-461
-
-
Alt, H.W.1
Caffarelli, L.A.2
Friedman, A.3
-
3
-
-
37549032410
-
Optimal regularity of lower dimensional obstacle problems
-
Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. [34], 226 (English, with English and Russian summaries); English transl. J. Math. Sci. (NY) 132(3), 274-284 (2006)
-
I. Athanasopoulos L.A. Caffarelli 2004 Optimal regularity of lower dimensional obstacle problems Zap. Naucn. Semin. St.-Peterb. Otd. Mat. Inst. Steklova (POMI) 310 35 49 66 Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. [34], 226 (English, with English and Russian summaries); English transl. J. Math. Sci. (NY) 132(3), 274-284 (2006)
-
(2004)
Zap. Naucn. Semin. St.-Peterb. Otd. Mat. Inst. Steklova (POMI)
, vol.310
, Issue.35
, pp. 49-66
-
-
Athanasopoulos, I.1
Caffarelli, L.A.2
-
4
-
-
43749087546
-
The structure of the free boundary for lower dimensional obstacle problems
-
I. Athanasopoulos L.A. Caffarelli S. Salsa 2008 The structure of the free boundary for lower dimensional obstacle problems Am. J. Math. 130 2 485 498
-
(2008)
Am. J. Math.
, vol.130
, Issue.2
, pp. 485-498
-
-
Athanasopoulos, I.1
Caffarelli, L.A.2
Salsa, S.3
-
5
-
-
0039084933
-
Further regularity for the Signorini problem
-
L.A. Caffarelli 1979 Further regularity for the Signorini problem Commun. Partial Differ. Equ. 4 9 1067 1075
-
(1979)
Commun. Partial Differ. Equ.
, vol.4
, Issue.9
, pp. 1067-1075
-
-
Caffarelli, L.A.1
-
6
-
-
1842766318
-
The obstacle problem revisited
-
L.A. Caffarelli 1998 The obstacle problem revisited J. Fourier Anal. Appl. 4 4-5 383 402
-
(1998)
J. Fourier Anal. Appl.
, vol.4
, Issue.45
, pp. 383-402
-
-
Caffarelli, L.A.1
-
7
-
-
0005309049
-
Asymptotic behaviour of free boundaries at their singular points
-
L.A. Caffarelli N.M. Rivière 1977 Asymptotic behaviour of free boundaries at their singular points Ann. Math. (2) 106 2 309 317
-
(1977)
Ann. Math. (2)
, vol.106
, Issue.2
, pp. 309-317
-
-
Caffarelli, L.A.1
Rivière, N.M.2
-
8
-
-
37849049246
-
Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
-
L. Caffarelli S. Salsa L. Silvestre 2008 Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian Invent. Math. 171 2 425 461
-
(2008)
Invent. Math.
, vol.171
, Issue.2
, pp. 425-461
-
-
Caffarelli, L.1
Salsa, S.2
Silvestre, L.3
-
9
-
-
34548348805
-
An extension problem related to the fractional Laplacian
-
L. Caffarelli L. Silvestre 2007 An extension problem related to the fractional Laplacian Commun. Partial Differ. Equ. 32 7-9 1245 1260
-
(2007)
Commun. Partial Differ. Equ.
, vol.32
, Issue.79
, pp. 1245-1260
-
-
Caffarelli, L.1
Silvestre, L.2
-
10
-
-
1342318409
-
-
Chapman and Hall, CRC Boca Raton
-
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall, CRC Financial Mathematics Series. Chapman and Hall, CRC, Boca Raton (2004)
-
(2004)
Financial Modelling with Jump Processes Chapman and Hall, CRC Financial Mathematics Series
-
-
Cont, R.1
Tankov, P.2
-
14
-
-
84990604274
-
Unique continuation for elliptic operators: A geometric-variational approach
-
N. Garofalo F.-H. Lin 1987 Unique continuation for elliptic operators: a geometric-variational approach Commun. Pure Appl. Math. 40 3 347 366
-
(1987)
Commun. Pure Appl. Math.
, vol.40
, Issue.3
, pp. 347-366
-
-
Garofalo, N.1
Lin, F.-H.2
-
16
-
-
84867974824
-
On the number of singularities for the obstacle problem in two dimensions
-
R. Monneau 2003 On the number of singularities for the obstacle problem in two dimensions J. Geom. Anal. 13 2 359 389
-
(2003)
J. Geom. Anal.
, vol.13
, Issue.2
, pp. 359-389
-
-
Monneau, R.1
-
18
-
-
33751514593
-
Regularity of the obstacle problem for a fractional power of the laplace operator
-
DOI 10.1002/cpa.20153
-
L. Silvestre 2007 Regularity of the obstacle problem for a fractional power of the Laplace operator Commun. Pure Appl. Math. 60 1 67 112 (Pubitemid 44832316)
-
(2007)
Communications on Pure and Applied Mathematics
, vol.60
, Issue.1
, pp. 67-112
-
-
Silvestre, L.1
-
19
-
-
77954190865
-
On the regularity of solutions of variational inequalities
-
(Russian); English transl., Russ. Math. Surv. 42(6), 191-219 (1987)
-
N.N. Ural'tseva 1987 On the regularity of solutions of variational inequalities Usp. Mat. Nauk 42 6 151 174 (Russian); English transl., Russ. Math. Surv. 42(6), 191-219 (1987)
-
(1987)
Usp. Mat. Nauk
, vol.42
, Issue.6
, pp. 151-174
-
-
Ural'Tseva, N.N.1
-
20
-
-
0033239032
-
A homogeneity improvement approach to the obstacle problem
-
G.S. Weiss 1999 A homogeneity improvement approach to the obstacle problem Invent. Math. 138 1 23 50
-
(1999)
Invent. Math.
, vol.138
, Issue.1
, pp. 23-50
-
-
Weiss, G.S.1
-
21
-
-
77956456169
-
Analytic extensions of differentiable functions defined in closed sets
-
H. Whitney 1934 Analytic extensions of differentiable functions defined in closed sets Trans. Am. Math. Soc. 36 1 63 89
-
(1934)
Trans. Am. Math. Soc.
, vol.36
, Issue.1
, pp. 63-89
-
-
Whitney, H.1
|