-
3
-
-
37049146976
-
-
Hughes E.D., Juliusburger F., Masterman S., Topley B., and Weiss J. J. Chem. Soc. (1935) 1525
-
(1935)
J. Chem. Soc.
, pp. 1525
-
-
Hughes, E.D.1
Juliusburger, F.2
Masterman, S.3
Topley, B.4
Weiss, J.5
-
4
-
-
85079996892
-
-
For reviews, see
-
For reviews, see:
-
-
-
-
6
-
-
0038434178
-
-
Tidwell T.T., and Richard J.P. (Eds), Academic, New York, NY
-
Okuyama T., and Lodder G. In: Tidwell T.T., and Richard J.P. (Eds). Advances in Physical Organic Chemistry Vol. 37 (2002), Academic, New York, NY 1-56
-
(2002)
Advances in Physical Organic Chemistry
, vol.37
, pp. 1-56
-
-
Okuyama, T.1
Lodder, G.2
-
15
-
-
84943506746
-
-
It was reported that intermolecular substitution reactions of β-halostyrenes with thiolate and selenide anions occur with retention of the configuration, but the reaction mechanisms were not revealed, see:
-
Marchese G., Naso F., and Modena G. J. Chem. Soc. B (1968) 958 It was reported that intermolecular substitution reactions of β-halostyrenes with thiolate and selenide anions occur with retention of the configuration, but the reaction mechanisms were not revealed, see:
-
(1968)
J. Chem. Soc. B
, pp. 958
-
-
Marchese, G.1
Naso, F.2
Modena, G.3
-
17
-
-
0000098153
-
-
Tiecco M., Testaferri L., Tingoli M., Chianelli D., and Montanucci M. Tetrahedron Lett. 25 (1984) 4975
-
(1984)
Tetrahedron Lett.
, vol.25
, pp. 4975
-
-
Tiecco, M.1
Testaferri, L.2
Tingoli, M.3
Chianelli, D.4
Montanucci, M.5
-
23
-
-
34248658242
-
-
Miyauchi H., Chiba S., Fukamizu K., Ando K., and Narasaka K. Tetrahedron 63 (2007) 5940
-
(2007)
Tetrahedron
, vol.63
, pp. 5940
-
-
Miyauchi, H.1
Chiba, S.2
Fukamizu, K.3
Ando, K.4
Narasaka, K.5
-
24
-
-
44149101635
-
-
Lei M.-Y., Fukamizu K., Xiao Y.-J., Liu W.-M., Twiddy S., Chiba S., Ando K., and Narasaka K. Tetrahedron Lett. 49 (2008) 4125
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 4125
-
-
Lei, M.-Y.1
Fukamizu, K.2
Xiao, Y.-J.3
Liu, W.-M.4
Twiddy, S.5
Chiba, S.6
Ando, K.7
Narasaka, K.8
-
28
-
-
0030914643
-
-
Markó I.E., Dobbs A.P., Scheirmann V., Chellé F., and Bayston D.J. Tetrahedron Lett. 38 (1997) 2899
-
(1997)
Tetrahedron Lett.
, vol.38
, pp. 2899
-
-
Markó, I.E.1
Dobbs, A.P.2
Scheirmann, V.3
Chellé, F.4
Bayston, D.J.5
-
33
-
-
0028912386
-
-
Bird P., Eames J., Fallis A.G., Jones R.V.H., Roddis M., Sturino C.F., O'Sullivan S., Warren S., Westwell M.S., and Worrall J. Tetrahedron Lett. 36 (1995) 1909
-
(1995)
Tetrahedron Lett.
, vol.36
, pp. 1909
-
-
Bird, P.1
Eames, J.2
Fallis, A.G.3
Jones, R.V.H.4
Roddis, M.5
Sturino, C.F.6
O'Sullivan, S.7
Warren, S.8
Westwell, M.S.9
Worrall, J.10
-
35
-
-
0000746195
-
-
Mandai T., Nokami J., Yano T., Yoshinaga Y., and Otera J. J. Org. Chem. 49 (1984) 172
-
(1984)
J. Org. Chem.
, vol.49
, pp. 172
-
-
Mandai, T.1
Nokami, J.2
Yano, T.3
Yoshinaga, Y.4
Otera, J.5
-
39
-
-
0035032275
-
-
Ma S., Xie H., Wang G., Zhang J., and Shi Z. Synthesis 5 (2001) 713
-
(2001)
Synthesis
, vol.5
, pp. 713
-
-
Ma, S.1
Xie, H.2
Wang, G.3
Zhang, J.4
Shi, Z.5
-
40
-
-
85079979022
-
-
note
-
The stereochemistries of the alkenes 48 and 49 were determined by NOE experiments.{A figure is presented}
-
-
-
-
41
-
-
0033936116
-
-
3 and MeOH under the same reaction conditions as those in Scheme 15. E-Bromoalkene 74 was recovered in 81% yield without contamination of Z-bromoalkene 75. Although Z-bromoalkene 75 was also recovered in 27% without the isomerization, alkyne 77 was isolated in 50% yield. Based on these observations, the possibility of bromoalkene isomerization-substitution sequence was excluded from the cyclizations of both 6 and 9 in Scheme 15. In the cyclization of Z-bromoalkene 9, an alternative mechanism such as formation of alkyne followed by cyclization to dihydrothiophene 52 might be proposed. However, the cyclization of an E/Z-mixture of bromoalkene 3, which has no possibility of alkyne formation, gave dihydrothiophene 51 without recovery of the Z-isomer.
-
3 and MeOH under the same reaction conditions as those in Scheme 15. E-Bromoalkene 74 was recovered in 81% yield without contamination of Z-bromoalkene 75. Although Z-bromoalkene 75 was also recovered in 27% without the isomerization, alkyne 77 was isolated in 50% yield. Based on these observations, the possibility of bromoalkene isomerization-substitution sequence was excluded from the cyclizations of both 6 and 9 in Scheme 15. In the cyclization of Z-bromoalkene 9, an alternative mechanism such as formation of alkyne followed by cyclization to dihydrothiophene 52 might be proposed. However, the cyclization of an E/Z-mixture of bromoalkene 3, which has no possibility of alkyne formation, gave dihydrothiophene 51 without recovery of the Z-isomer. Moreover, the alkyne formation is slower as compared with the cyclization. Accordingly, nucleophilic substitution pathway is most likely for the reaction mechanism of the cyclization of both bromoalkenes 6 and 9 as shown in Scheme 15. For a report of the formation of dihydrothiophenes from sulfur-alkyne cyclizations, see:. McDonald F.E., Burova S.A., and Huffman Jr. L.G. Synthesis 7 (2000) 970 {A figure is presented}
-
(2000)
Synthesis
, vol.7
, pp. 970
-
-
McDonald, F.E.1
Burova, S.A.2
Huffman Jr., L.G.3
-
42
-
-
15744375697
-
-
Gaussian, Wallingford CT
-
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery Jr. J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., and Pople J.A. Gaussian 03, Revision C.02 (2004), Gaussian, Wallingford CT
-
(2004)
Gaussian 03, Revision C.02
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Adamo, C.36
Jaramillo, J.37
Gomperts, R.38
Stratmann, R.E.39
Yazyev, O.40
Austin, A.J.41
Cammi, R.42
Pomelli, C.43
Ochterski, J.W.44
Ayala, P.Y.45
Morokuma, K.46
Voth, G.A.47
Salvador, P.48
Dannenberg, J.J.49
Zakrzewski, V.G.50
Dapprich, S.51
Daniels, A.D.52
Strain, M.C.53
Farkas, O.54
Malick, D.K.55
Rabuck, A.D.56
Raghavachari, K.57
Foresman, J.B.58
Ortiz, J.V.59
Cui, Q.60
Baboul, A.G.61
Clifford, S.62
Cioslowski, J.63
Stefanov, B.B.64
Liu, G.65
Liashenko, A.66
Piskorz, P.67
Komaromi, I.68
Martin, R.L.69
Fox, D.J.70
Keith, T.71
Al-Laham, M.A.72
Peng, C.Y.73
Nanayakkara, A.74
Challacombe, M.75
Gill, P.M.W.76
Johnson, B.77
Chen, W.78
Wong, M.W.79
Gonzalez, C.80
Pople, J.A.81
more..
-
47
-
-
85079968132
-
-
note
-
DMI has an almost the same dielectric constant (37.60) as DMF. Since DMF and DMI are able to dissolve many salts and tend to surround metal cations rather than nucleophilic anions, the use of free anions as model systems could be approved.
-
-
-
-
49
-
-
0011708503
-
-
For reports on the synthesis of 2-alkylidenethietane derivatives, see:
-
For reports on the synthesis of 2-alkylidenethietane derivatives, see:. Bolster J., and Kellogg R.M. J. Org. Chem. 45 (1980) 4804
-
(1980)
J. Org. Chem.
, vol.45
, pp. 4804
-
-
Bolster, J.1
Kellogg, R.M.2
-
50
-
-
0032578816
-
-
Ozaki S., Matsui E., Saiki T., Yoshinaga H., and Ohmori H. Tetrahedron Lett. 39 (1998) 8121
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 8121
-
-
Ozaki, S.1
Matsui, E.2
Saiki, T.3
Yoshinaga, H.4
Ohmori, H.5
-
51
-
-
0033928680
-
-
Bonini B.F., Franchini M.C., Fochi M., Mangini S., Mazzanti G., and Ricci A. Eur. J. Org. Chem. (2000) 2391
-
(2000)
Eur. J. Org. Chem.
, pp. 2391
-
-
Bonini, B.F.1
Franchini, M.C.2
Fochi, M.3
Mangini, S.4
Mazzanti, G.5
Ricci, A.6
-
52
-
-
58149314190
-
-
Zhao Q., Li L., Fang Y., Sun D., and Li C. J. Org. Chem. 74 (2009) 459
-
(2009)
J. Org. Chem.
, vol.74
, pp. 459
-
-
Zhao, Q.1
Li, L.2
Fang, Y.3
Sun, D.4
Li, C.5
-
53
-
-
85080009317
-
-
note
-
The stereochemistries of the alkenes 72 and 73 were determined by NOE measurements of the corresponding sulfones 78 and 79, which were prepared by oxidation of 72 and 73 with m-chloroperbenzoic acid (m-CPBA) as shown below.{A figure is presented}
-
-
-
|