메뉴 건너뛰기




Volumn 1, Issue , 2008, Pages 232-235

Investigation of ica algorithms for feature extraction of EEG signals in discrimination of alzheimer disease

Author keywords

Alzheimer disease; BSS; EEG; Feature extraction; ICA

Indexed keywords

ALZHEIMER DISEASE; BSS; COGNITIVE IMPAIRMENT; CONTROL SUBJECT; EARLY DETECTION; EEG; EEG SIGNALS; ICA; ICA ALGORITHMS; NOISE REDUCTIONS; QUANTITATIVE COMPARISON;

EID: 67650516593     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (3)
  • 3
    • 33749065365 scopus 로고    scopus 로고
    • Vialatte, F. and et al. (2005). Blind source separation and sparse bump modelling of time frequency representation of eeg signals: New tools for early detection of alzheimer's disease. In Proc. IEEE Work Machine Learning for Signal Processing, pp. 2 7-32.
    • Vialatte, F. and et al. (2005). Blind source separation and sparse bump modelling of time frequency representation of eeg signals: New tools for early detection of alzheimer's disease. In Proc. IEEE Work Machine Learning for Signal Processing, pp. 2 7-32.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.