메뉴 건너뛰기




Volumn 50, Issue 6, 2009, Pages

The entries of circular orthogonal ensembles

Author keywords

[No Author keywords available]

Indexed keywords


EID: 67650497880     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3152217     Document Type: Article
Times cited : (13)

References (19)
  • 4
    • 0000436287 scopus 로고
    • Finite deFinetti theorem in linear models and multivariate analysis
    • 0303-6898.
    • Diaconis, P. W., Eaton, M. L., and Lauritzen, S. L., " Finite deFinetti theorem in linear models and multivariate analysis.," Scand. J. Stat. 0303-6898 19, 289 (1992).
    • (1992) Scand. J. Stat. , vol.19 , pp. 289
    • Diaconis, P.W.1    Eaton, M.L.2    Lauritzen, S.L.3
  • 5
    • 35549006412 scopus 로고
    • Statistical theory of energy levels of complex systems, i
    • 0022-2488,. 10.1063/1.1703773
    • Dyson, F. J., " Statistical theory of energy levels of complex systems, I.," J. Math. Phys. 0022-2488 3, 140 (1962). 10.1063/1.1703773
    • (1962) J. Math. Phys. , vol.3 , pp. 140
    • Dyson, F.J.1
  • 6
    • 0242436583 scopus 로고
    • Statistical theory of energy levels of complex systems, II
    • 0022-2488,. 10.1063/1.1703775
    • Dyson, F. J., " Statistical theory of energy levels of complex systems, II.," J. Math. Phys. 0022-2488 3, 166 (1962). 10.1063/1.1703775
    • (1962) J. Math. Phys. , vol.3 , pp. 166
    • Dyson, F.J.1
  • 7
    • 0242436583 scopus 로고
    • Statistical theory of energy levels of complex systems, III
    • 0022-2488,. 10.1063/1.1703862
    • Dyson, F. J., " Statistical theory of energy levels of complex systems, III.," J. Math. Phys. 0022-2488 3, 1191 (1962). 10.1063/1.1703862
    • (1962) J. Math. Phys. , vol.3 , pp. 1191
    • Dyson, F.J.1
  • 9
    • 60449099031 scopus 로고    scopus 로고
    • Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles
    • 0178-8051,. 10.1007/s00440-008-0146-x
    • Jiang, T., " Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles.," Probab. Theory Relat. Fields 0178-8051 144, 221 (2009). 10.1007/s00440-008-0146-x
    • (2009) Probab. Theory Relat. Fields , vol.144 , pp. 221
    • Jiang, T.1
  • 10
    • 33750157608 scopus 로고    scopus 로고
    • How many entries of a typical orthogonal matrix can be approximated by independent normals?
    • 0091-1798,. 10.1214/009117906000000205
    • Jiang, T., " How many entries of a typical orthogonal matrix can be approximated by independent normals?," Ann. Probab. 0091-1798 34, 1497 (2006). 10.1214/009117906000000205
    • (2006) Ann. Probab. , vol.34 , pp. 1497
    • Jiang, T.1
  • 11
    • 11244283404 scopus 로고    scopus 로고
    • Maxima of Entries of Haar Distributed Matrices
    • 0178-8051,. 10.1007/s00440-004-0376-5
    • Jiang, T., " Maxima of Entries of Haar Distributed Matrices.," Probab. Theory Relat. Fields 0178-8051 131, 121 (2005). 10.1007/s00440-004-0376- 5
    • (2005) Probab. Theory Relat. Fields , vol.131 , pp. 121
    • Jiang, T.1
  • 12
    • 11244330494 scopus 로고    scopus 로고
    • The asymptotic distributions of the largest entries of sample correlation matrices
    • 1050-5164,. 10.1214/105051604000000143
    • Jiang, T., " The asymptotic distributions of the largest entries of sample correlation matrices.," Ann. Appl. Probab. 1050-5164 14, 865 (2004). 10.1214/105051604000000143
    • (2004) Ann. Appl. Probab. , vol.14 , pp. 865
    • Jiang, T.1
  • 13
    • 33645677536 scopus 로고    scopus 로고
    • Some strong limit theorems for the largest entries of sample correlation matrices
    • 1050-5164,. 10.1214/105051605000000773
    • Li, D. and Rosalsky, A., " Some strong limit theorems for the largest entries of sample correlation matrices.," Ann. Appl. Probab. 1050-5164 16, 423 (2006). 10.1214/105051605000000773
    • (2006) Ann. Appl. Probab. , vol.16 , pp. 423
    • Li, D.1    Rosalsky, A.2
  • 14
    • 77953702255 scopus 로고    scopus 로고
    • Necessary and sufficient conditions for the asymptotic distributions of the largest entry of a sample correlation matrix
    • 0178-8051 (to be published); see.
    • Li, D., Liu, W. and Rosalsky, A., " Necessary and sufficient conditions for the asymptotic distributions of the largest entry of a sample correlation matrix.," Probab. Theory Relat. Fields 0178-8051 (to be published); see http://www.springerlink.com/content/887848w933413551.
    • Probab. Theory Relat. Fields
    • Li, D.1    Liu, W.2    Rosalsky, A.3
  • 15
    • 63049106197 scopus 로고    scopus 로고
    • The asymptotic distribution and the Berry-Esseen bound of a new test for independence in high dimension with application to stochastic optimization
    • 1050-5164, (); 10.1214/08-AAP527 see also.
    • Liu, W. D., Lin, Z., and Shao, Q. M., " The asymptotic distribution and the Berry-Esseen bound of a new test for independence in high dimension with application to stochastic optimization.," Ann. Appl. Probab. 1050-5164 18, 2337 (2008); 10.1214/08-AAP527 see also http://wwww.imstat.org/aap/future- papers.html.
    • (2008) Ann. Appl. Probab. , vol.18 , pp. 2337
    • Liu, W.D.1    Lin, Z.2    Shao, Q.M.3
  • 16
    • 0004163930 scopus 로고
    • 2nd ed. (Academic, Boston).
    • Mehta, M. L., Random Matrices, 2nd ed. (Academic, Boston, 1991).
    • (1991) Random Matrices
    • Mehta, M.L.1
  • 17
    • 34248378314 scopus 로고    scopus 로고
    • How to generate random matrices from the classical compact groups
    • 0002-9920.
    • Mezzadri, F., " How to generate random matrices from the classical compact groups.," Not. Am. Math. Soc. 0002-9920 54, 592 (2007).
    • (2007) Not. Am. Math. Soc. , vol.54 , pp. 592
    • Mezzadri, F.1
  • 19
    • 63049085100 scopus 로고    scopus 로고
    • Asymptotic distribution of the largest off-diagonal entry of correlation matrices
    • 0002-9947,. 10.1090/S0002-9947-07-04192-X
    • Zhou, W., " Asymptotic distribution of the largest off-diagonal entry of correlation matrices.," Trans. Am. Math. Soc. 0002-9947 359, 5345 (2007). 10.1090/S0002-9947-07-04192-X
    • (2007) Trans. Am. Math. Soc. , vol.359 , pp. 5345
    • Zhou, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.