메뉴 건너뛰기




Volumn 79, Issue 4, 2009, Pages

Effects of noise and confidence thresholds in nominal and metric Axelrod dynamics of social influence

Author keywords

[No Author keywords available]

Indexed keywords

AXELROD'S MODEL; CONFIDENCE THRESHOLD; DISORDERED STATE; EXTERNAL NOISE; FINITE SYSTEMS; MASTER EQUATIONS; MEAN-FIELD; NOMINAL FEATURE; NUMERICAL SIMULATION; SIMILARITIES AND DIFFERENCES; SOCIAL INFLUENCE; THERMODYNAMIC LIMITS;

EID: 67650460009     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.79.046108     Document Type: Article
Times cited : (47)

References (37)
  • 1
    • 21744459955 scopus 로고    scopus 로고
    • 10.1177/0022002797041002001
    • R. Axelrod, J. Conflict Resolut. 41, 203 (1997). 10.1177/ 0022002797041002001
    • (1997) J. Conflict Resolut. , vol.41 , pp. 203
    • Axelrod, R.1
  • 7
    • 0036025778 scopus 로고    scopus 로고
    • 10.1146/annurev.soc.28.110601.141117
    • M. W. Macy and R. Willer, Annu. Rev. Sociol. 28, 143 (2002). 10.1146/annurev.soc.28.110601.141117
    • (2002) Annu. Rev. Sociol. , vol.28 , pp. 143
    • MacY, M.W.1    Willer, R.2
  • 9
    • 0041871837 scopus 로고    scopus 로고
    • 10.1080/0001873031000093582
    • F. Ritort and P. Sollich, Adv. Phys. 52, 219 (2003). 10.1080/ 0001873031000093582
    • (2003) Adv. Phys. , vol.52 , pp. 219
    • Ritort, F.1    Sollich, P.2
  • 16
    • 67650431108 scopus 로고    scopus 로고
    • arXiv:physics/0604196;
    • A. Flache and M. Macy, e-print arXiv:physics/0604196
    • Flache, A.1    MacY, M.2
  • 18
    • 67650449078 scopus 로고    scopus 로고
    • arXiv:physics/0604201
    • A. Flache and M. Macy, e-print arXiv:physics/0604201
    • Flache, A.1    MacY, M.2
  • 19
    • 67650408598 scopus 로고    scopus 로고
    • arXiv:physics/0701333.
    • A. Flache and M. Macy, e-print arXiv:physics/0701333.
    • Flache, A.1    MacY, M.2
  • 26
    • 67650420433 scopus 로고    scopus 로고
    • http://jasss.soc.surrey.ac.uk/5/4/1.html
  • 27
    • 33846303340 scopus 로고    scopus 로고
    • edited by B. K. Chakrabarti, A. Chakraborti, and A. Chatterjee (Wiley, New York
    • G. Weisbuch, in Econophysics and Sociophysics, edited by, B. K. Chakrabarti, A. Chakraborti, and, A. Chatterjee, (Wiley, New York, 2007).
    • (2007) Econophysics and Sociophysics
    • Weisbuch, G.1
  • 29
    • 67650416794 scopus 로고    scopus 로고
    • http://jasss.soc.surrey.ac.uk/7/3/7.html
  • 31
    • 79051468705 scopus 로고    scopus 로고
    • 10.1209/0295-5075/78/18002
    • F. Vazquez and S. Redner, EPL 78, 18002 (2007). 10.1209/0295-5075/78/ 18002
    • (2007) EPL , vol.78 , pp. 18002
    • Vazquez, F.1    Redner, S.2
  • 32
    • 67650426041 scopus 로고    scopus 로고
    • We here do not impose the constraint that R be connected as it is often done in the literature. This simplifies the numerical determination of the size of the largest homogeneous region. Results regarding the phase structure do not depend on whether or not connectedness is assumed in the definition of homogeneous regions. In particular the ordered phase consists of one region spanning the entire system, so that both definitions yield the same characterization of the low- q phase.
    • We here do not impose the constraint that R be connected as it is often done in the literature. This simplifies the numerical determination of the size of the largest homogeneous region. Results regarding the phase structure do not depend on whether or not connectedness is assumed in the definition of homogeneous regions. In particular the ordered phase consists of one region spanning the entire system, so that both definitions yield the same characterization of the low- q phase.
  • 33
    • 67650422870 scopus 로고    scopus 로고
    • Integration of the master equation yields a positive value for the fraction of active bonds in the ordered phase (coarsening lasts indefinitely in infinite systems in the ordered phase) and a vanishing fraction in the disordered phase, similar to. The location of the phase transition in Fig. 3 is obtained as the point where the number of active bonds decreases below a threshold on the order of 10-3, or equivalently as the point at which a discontinuity in PF or its derivative occurs.
    • Integration of the master equation yields a positive value for the fraction of active bonds in the ordered phase (coarsening lasts indefinitely in infinite systems in the ordered phase) and a vanishing fraction in the disordered phase, similar to. The location of the phase transition in Fig. 3 is obtained as the point where the number of active bonds decreases below a threshold on the order of 10-3, or equivalently as the point at which a discontinuity in PF or its derivative occurs.
  • 35
    • 67650426040 scopus 로고    scopus 로고
    • Rescaling both axes in Fig. 3 and plotting the phase boundaries in (/F,q/F) plane give an equally good collapse.
    • Rescaling both axes in Fig. 3 and plotting the phase boundaries in (/F,q/F) plane give an equally good collapse.
  • 36
    • 67650425404 scopus 로고    scopus 로고
    • We here note that the data shown in Fig. 6 suggest that PF at stationarity might potentially be a decreasing function of δ for r 0.01. PF is small for all tested values of δ in this regime, however, so that we have not investigated this regime further.
    • We here note that the data shown in Fig. 6 suggest that PF at stationarity might potentially be a decreasing function of δ for r 0.01. PF is small for all tested values of δ in this regime, however, so that we have not investigated this regime further.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.