메뉴 건너뛰기




Volumn 27, Issue 29, 2008, Pages 6228-6249

Joint analysis of multiple longitudinal outcomes: Application of a latent class model

Author keywords

Latent class model; Longitudinal data; Multiple imputation; Quality of life

Indexed keywords

ARTICLE; BIOMETRY; DENIAL; FEMALE; HEALTH STATUS; HUMAN; LONGITUDINAL STUDY; LUNG TUMOR; MALE; METHODOLOGY; NETHERLANDS; PSYCHOLOGICAL ASPECT; QUALITY OF LIFE; STATISTICAL MODEL;

EID: 67650403407     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3435     Document Type: Article
Times cited : (16)

References (43)
  • 2
    • 0029123297 scopus 로고
    • Inference for the association between coefficients in a multivariate growth curve model
    • Zucker DM, Zerbe GO, Wu MC. Inference for the association between coefficients in a multivariate growth curve model. Biometrics 1995; 51:413-424.
    • (1995) Biometrics , vol.51 , pp. 413-424
    • Zucker, D.M.1    Zerbe, G.O.2    Wu, M.C.3
  • 5
    • 0008974359 scopus 로고    scopus 로고
    • Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen
    • Chakraborty H, Helms RW, Sen PK, Cohen MS. Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen. Statistics in Medicine 2003; 22:1457-1464.
    • (2003) Statistics in Medicine , vol.22 , pp. 1457-1464
    • Chakraborty, H.1    Helms, R.W.2    Sen, P.K.3    Cohen, M.S.4
  • 7
    • 5044220677 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach
    • Fieuws S, Verbeke G. Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach. Statistics in Medicine 2004; 23:3093-3104.
    • (2004) Statistics in Medicine , vol.23 , pp. 3093-3104
    • Fieuws, S.1    Verbeke, G.2
  • 8
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing developmental trajectories: a semi-parametric group-based approach
    • Nagin D. Analyzing developmental trajectories: a semi-parametric group-based approach. Psychological Methods 1999; 4:139-157.
    • (1999) Psychological Methods , vol.4 , pp. 139-157
    • Nagin, D.1
  • 9
    • 0035530692 scopus 로고    scopus 로고
    • A SAS procedure based on mixture models for estimating developmental trajectories
    • Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociological Methods and Research 2001; 29:374-393.
    • (2001) Sociological Methods and Research , vol.29 , pp. 374-393
    • Jones, B.L.1    Nagin, D.S.2    Roeder, K.3
  • 10
    • 0035287985 scopus 로고    scopus 로고
    • Analyzing developmental trajectories of distinct but related behaviors: a group-based method
    • Nagin D, Tremblay R. Analyzing developmental trajectories of distinct but related behaviors: a group-based method. Psychological Methods 2001; 6:18-34.
    • (2001) Psychological Methods , vol.6 , pp. 18-34
    • Nagin, D.1    Tremblay, R.2
  • 11
    • 34247124854 scopus 로고    scopus 로고
    • Advances in group-based trajectory modeling and an SAS procedure for estimating them
    • Jones BL, Nagin DS. Advances in group-based trajectory modeling and an SAS procedure for estimating them. Sociological Methods and Research 2007; 35:542-571.
    • (2007) Sociological Methods and Research , vol.35 , pp. 542-571
    • Jones, B.L.1    Nagin, D.S.2
  • 12
    • 27144496957 scopus 로고    scopus 로고
    • Alcohol consumption and cognitive function in late life-a longitudinal community study
    • Ganguli M, Bilt JV, Saxton JA, Shen C, Dodge HH. Alcohol consumption and cognitive function in late life-a longitudinal community study. Neurology 2005; 65:1210-1217.
    • (2005) Neurology , vol.65 , pp. 1210-1217
    • Ganguli, M.1    Bilt, J.V.2    Saxton, J.A.3    Shen, C.4    Dodge, H.H.5
  • 13
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthen B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 1999; 55:463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthen, B.1    Shedden, K.2
  • 14
    • 0009835762 scopus 로고    scopus 로고
    • Latent growth modeling of longitudinal data: a finite growth mixture modeling approach
    • Li F, Duncan TE, Duncan SC. Latent growth modeling of longitudinal data: a finite growth mixture modeling approach. Structural Equation Modeling 2001; 8:493-530.
    • (2001) Structural Equation Modeling , vol.8 , pp. 493-530
    • Li, F.1    Duncan, T.E.2    Duncan, S.C.3
  • 15
    • 84877837003 scopus 로고    scopus 로고
    • Mplus User's Guide (5th edn). Muthén & Muthén: Los Angeles, CA
    • Muthén LK, Muthén BO. Mplus User's Guide (5th edn). Muthén & Muthén: Los Angeles, CA, 1998.
    • (1998)
    • Muthén, L.K.1    Muthén, B.O.2
  • 18
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott MR, Gallo JJ, Ten Have TR, Bogner HR, Katz IR. Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics 2005; 6:119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten Have, T.R.3    Bogner, H.R.4    Katz, I.R.5
  • 19
    • 0029597951 scopus 로고
    • Inferences on association parameter in copula models for bivariate survival data
    • Shih JH, Louis TA. Inferences on association parameter in copula models for bivariate survival data. Biometrics 1995; 51:1384-1399.
    • (1995) Biometrics , vol.51 , pp. 1384-1399
    • Shih, J.H.1    Louis, T.A.2
  • 20
    • 0034203535 scopus 로고    scopus 로고
    • A two-stage estimator of the dependence parameter for the Clayton-Oakes model
    • Glidden DV. A two-stage estimator of the dependence parameter for the Clayton-Oakes model. Lifetime Data Analysis 2000; 6:141-156.
    • (2000) Lifetime Data Analysis , vol.6 , pp. 141-156
    • Glidden, D.V.1
  • 21
    • 4444319100 scopus 로고    scopus 로고
    • Composite likelihood and two-stage estimation in family studies
    • Andersen EW. Composite likelihood and two-stage estimation in family studies. Biostatistics 2004; 5:15-30.
    • (2004) Biostatistics , vol.5 , pp. 15-30
    • Andersen, E.W.1
  • 24
    • 0000821796 scopus 로고
    • Pseudo maximum likelihood estimation: theory and applications
    • Gong G, Samaniego FJ. Pseudo maximum likelihood estimation: theory and applications. Annals of Statistics 1981; 9:861-869.
    • (1981) Annals of Statistics , vol.9 , pp. 861-869
    • Gong, G.1    Samaniego, F.J.2
  • 25
    • 18444394959 scopus 로고    scopus 로고
    • Efficient estimation of Banach parameters in semiparametric models
    • Klaassen CAJ, Putter H. Efficient estimation of Banach parameters in semiparametric models. Annals of Statistics 2005; 33:307-346.
    • (2005) Annals of Statistics , vol.33 , pp. 307-346
    • Klaassen, C.A.J.1    Putter, H.2
  • 28
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 29
    • 80051593425 scopus 로고
    • Maximum likelihood computations with repeated measures: application of the EM algorithm
    • Laird NM, Lange N, Stram D. Maximum likelihood computations with repeated measures: application of the EM algorithm. Journal of the American Statistical Association 1987; 82:97-105.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 97-105
    • Laird, N.M.1    Lange, N.2    Stram, D.3
  • 30
    • 84950419603 scopus 로고
    • Newton-Raphson and EM algorithms for linear mixed-effects models for repeatedmeasures data
    • Lindstrom MJ, Bates DM. Newton-Raphson and EM algorithms for linear mixed-effects models for repeatedmeasures data. Journal of the American Statistical Association 1988; 83:1014-1022.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1014-1022
    • Lindstrom, M.J.1    Bates, D.M.2
  • 31
    • 0003891734 scopus 로고
    • Mixture Models: Inference and Application to Clustering
    • Marcel Dekker: New York
    • McLachlan GJ, Basford KE. Mixture Models: Inference and Application to Clustering. Marcel Dekker: New York, 1988.
    • (1988)
    • McLachlan, G.J.1    Basford, K.E.2
  • 32
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Series B
    • Louis TA. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 1982; 44:226-233.
    • (1982) Journal of the Royal Statistical Society , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 33
    • 0003496949 scopus 로고    scopus 로고
    • Statistical Analysis with Missing Data
    • Wiley: New York
    • Little RJA, Rubin DB. Statistical Analysis with Missing Data. Wiley: New York, 2002.
    • (2002)
    • Little, R.J.A.1    Rubin, D.B.2
  • 34
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke G, Lesaffre E. A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 1996; 91:217-221.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 35
    • 34247551217 scopus 로고    scopus 로고
    • A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome
    • Proust-Lima C, Letenneur L, Jacqmin-Gadda H. A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome. Statistics in Medicine 2007; 26:2229-2245.
    • (2007) Statistics in Medicine , vol.26 , pp. 2229-2245
    • Proust-Lima, C.1    Letenneur, L.2    Jacqmin-Gadda, H.3
  • 36
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • Beunckens C, Molenberghs G, Verbeke G, Mallinckrodt C. A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 2008; 64:96-105.
    • (2008) Biometrics , vol.64 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 37
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes
    • Bauer DJ, Curran PJ. Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychological Methods 2003; 8:338-363.
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 38
    • 0001915899 scopus 로고
    • Composite likelihood methods
    • Lindsay B. Composite likelihood methods. Contemporary Mathematics 1988; 80:221-239.
    • (1988) Contemporary Mathematics , vol.80 , pp. 221-239
    • Lindsay, B.1
  • 40
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53:330-339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 41
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics 2000; 1:465-480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 42
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin H, Turnbull BW, McCulloch CE, Slate EH. Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 2002; 97:53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.W.2    McCulloch, C.E.3    Slate, E.H.4
  • 43
    • 33845486516 scopus 로고    scopus 로고
    • A goodness-of-fit test for multinomial logistic regression
    • Goeman JJ, le Cessie S. A goodness-of-fit test for multinomial logistic regression. Biometrics 2006; 62:980-985.
    • (2006) Biometrics , vol.62 , pp. 980-985
    • Goeman, J.J.1    Le Cessie, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.