메뉴 건너뛰기




Volumn 79, Issue 4, 2009, Pages

Generating highly squeezed hybrid Laguerre-Gauss modes in large-Fresnel-number degenerate optical parametric oscillators

Author keywords

[No Author keywords available]

Indexed keywords

CLASSICAL PROBLEMS; DEGENERATE OPTICAL PARAMETRIC OSCILLATORS; FRESNEL; LAGUERRE; LINEAR APPROXIMATIONS; LINEAR COMBINATIONS; ORBITAL ANGULAR MOMENTUM; QUADRATURE SQUEEZING; QUANTUM PROPERTIES; ROTATIONAL INVARIANCES; SIGNAL FIELDS; SINGLE MODE; SPHERICAL MIRROR; SQUEEZING PROPERTY; SUBHARMONIC; SYMMETRIC MODE; TRANSVERSE-MODE;

EID: 67650296147     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.79.043820     Document Type: Article
Times cited : (33)

References (25)
  • 1
    • 0023364920 scopus 로고
    • 10.1080/09500348714550721
    • R. Loudon and P. L. Knight, J. Mod. Opt. 34, 709 (1987). 10.1080/09500348714550721
    • (1987) J. Mod. Opt. , vol.34 , pp. 709
    • Loudon, R.1    Knight, P.L.2
  • 3
    • 0343342536 scopus 로고    scopus 로고
    • edited by P. D. Drummond and Z. Ficek (Springer, New York
    • Quantum Squeezing, edited by, P. D. Drummond, and, Z. Ficek, (Springer, New York, 2004).
    • (2004) Quantum Squeezing
  • 12
    • 0000181982 scopus 로고
    • 10.1103/PhysRevA.52.1675
    • A. Gatti and L. A. Lugiato, Phys. Rev. A 52, 1675 (1995). 10.1103/PhysRevA.52.1675
    • (1995) Phys. Rev. A , vol.52 , pp. 1675
    • Gatti, A.1    Lugiato, L.A.2
  • 17
    • 67650304317 scopus 로고    scopus 로고
    • arXiv:0901.2783.
    • Related experiments have been started for the simplest case (f=1) we treated in; see M. Lassen, G. Leuchs, and U. L. Anderson, e-print arXiv:0901.2783.
    • Lassen, M.1    Leuchs, G.2    Anderson, U.L.3
  • 18
  • 22
    • 67650282675 scopus 로고    scopus 로고
    • Note that χ α0 in reads γs N in our notation.
    • Note that χ α0 in reads γs N in our notation.
  • 23
    • 67650295136 scopus 로고    scopus 로고
    • It is worth remarking one point on the diagonalization of operator Ll. Its eigensystem consists of two degenerate subspaces. How must the two eigenvectors expanding each degenerate subspace be chosen? As will become clearer later, the more appropriate choice is the one that makes the operators related to the projections cj be either Hermitian or anti-Hermitian, so that they coincide (up to a real or imaginary constant) with some observables of interest. For example, with our choice of eigenvectors we see that the operators related to c1l and c2l are c 1,2 l = a +l ± a +l † ± a -l + a -l † [see Eq. 29], which are Hermitian and anti-Hermitian, respectively.
    • It is worth remarking one point on the diagonalization of operator Ll. Its eigensystem consists of two degenerate subspaces. How must the two eigenvectors expanding each degenerate subspace be chosen? As will become clearer later, the more appropriate choice is the one that makes the operators related to the projections cj be either Hermitian or anti-Hermitian, so that they coincide (up to a real or imaginary constant) with some observables of interest. For example, with our choice of eigenvectors we see that the operators related to c1l and c2l are c 1,2 l = a +l ± a +l † ± a -l + a -l † [see Eq. 29], which are Hermitian and anti-Hermitian, respectively.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.