메뉴 건너뛰기




Volumn 79, Issue 5, 2009, Pages

Loss of spin entanglement for accelerated electrons in electric and magnetic fields

Author keywords

[No Author keywords available]

Indexed keywords

ACCELERATED ELECTRONS; ELECTRIC AND MAGNETIC FIELDS; ELECTRON SPINS; OPEN QUANTUM SYSTEMS; SPIN ENTANGLEMENT; TIME DEPENDENCE;

EID: 67650286790     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.79.052109     Document Type: Article
Times cited : (61)

References (35)
  • 2
    • 36149066940 scopus 로고
    • 10.1088/0305-4470/8/4/022
    • P. C. W. Davies, J. Phys. A 8, 609 (1975). 10.1088/0305-4470/8/4/022
    • (1975) J. Phys. A , vol.8 , pp. 609
    • Davies, P.C.W.1
  • 3
    • 0000065307 scopus 로고
    • 10.1103/PhysRevD.7.2850
    • S. A. Fulling, Phys. Rev. D 7, 2850 (1973). 10.1103/PhysRevD.7.2850
    • (1973) Phys. Rev. D , vol.7 , pp. 2850
    • Fulling, S.A.1
  • 4
    • 0000502656 scopus 로고
    • 10.1103/PhysRevD.14.870
    • W. G. Unruh, Phys. Rev. D 14, 870 (1976). 10.1103/PhysRevD.14.870
    • (1976) Phys. Rev. D , vol.14 , pp. 870
    • Unruh, W.G.1
  • 5
    • 49049128975 scopus 로고
    • 10.1016/0550-3213(83)90601-6
    • J. S. Bell and J. M. Leinaas, Nucl. Phys. B 212, 131 (1983). 10.1016/0550-3213(83)90601-6
    • (1983) Nucl. Phys. B , vol.212 , pp. 131
    • Bell, J.S.1    Leinaas, J.M.2
  • 7
    • 4243684526 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.80.2245
    • W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). 10.1103/PhysRevLett.80. 2245
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 2245
    • Wootters, W.K.1
  • 8
    • 3843075385 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.89.270402
    • R. M. Gingrich and C. Adami, Phys. Rev. Lett. 89, 270402 (2002). 10.1103/PhysRevLett.89.270402
    • (2002) Phys. Rev. Lett. , vol.89 , pp. 270402
    • Gingrich, R.M.1    Adami, C.2
  • 10
    • 0348221010 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.91.180404
    • P. M. Alsing and G. J. Milburn, Phys. Rev. Lett. 91, 180404 (2003). 10.1103/PhysRevLett.91.180404
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 180404
    • Alsing, P.M.1    Milburn, G.J.2
  • 15
    • 0002926361 scopus 로고
    • 10.1103/RevModPhys.48.417
    • J. D. Jackson, Rev. Mod. Phys. 48, 417 (1976). 10.1103/RevModPhys.48.417
    • (1976) Rev. Mod. Phys. , vol.48 , pp. 417
    • Jackson, J.D.1
  • 17
    • 67650329000 scopus 로고    scopus 로고
    • note
    • In this effective Hamiltonian is written in terms of the IRF electric field. One can show using the Lorentz force equation (under the assumption that nonelectromagnetic causes of the acceleration are negligible) that these two forms are equivalent.
  • 19
    • 67650307442 scopus 로고    scopus 로고
    • This is just a change in basis of the standard polarization directions and should not be confused with the creation or annihilation operators which are obtained by separating the field into positive and negative frequencies.
    • This is just a change in basis of the standard polarization directions and should not be confused with the creation or annihilation operators which are obtained by separating the field into positive and negative frequencies.
  • 20
    • 84869370191 scopus 로고    scopus 로고
    • These magnetic modes are related to photon modes through B□ =□× A□.
    • These magnetic modes are related to photon modes through B□ =□× A□.
  • 23
    • 67650316680 scopus 로고    scopus 로고
    • Since the spin-field coupling strength is small, a perturbative expansion is acceptable.
    • Since the spin-field coupling strength is small, a perturbative expansion is acceptable.
  • 24
    • 84869364509 scopus 로고    scopus 로고
    • TrB [V (τ) ρB] =-μ σi TrB (Bi† ρB) and since Bi = Bi+ + Bi-, where Bi± are the positive and negative frequencies, then as long as the field is not in a squeezed state (we assume ρB is not) TrB (Bi± ρB) =0.
    • TrB [V (τ) ρB] =-μ σi TrB (Bi† ρB) and since Bi = Bi+ + Bi-, where Bi± are the positive and negative frequencies, then as long as the field is not in a squeezed state (we assume ρB is not) TrB (Bi± ρB) =0.
  • 25
    • 67650307443 scopus 로고    scopus 로고
    • note
    • Where the choice of -i appropriate Green's function for this two-point correlation function (see for a discussion on the analytic properties of the Green's functions).en made to recover the appropriate Green's function for this two-point correlation function (see for a discussion on the analytic properties of the Green's functions).
  • 26
    • 84869362400 scopus 로고    scopus 로고
    • Note that B± (x) □ = Bx (x) Bx (x′) + By (x) By (x′) =2G (x, x′).
    • Note that B± (x) B□ (x′) = Bx (x) Bx (x′) + By (x) By (x′) =2G (x, x′).
  • 27
    • 84869370190 scopus 로고    scopus 로고
    • A. J. Fisher, Graduate course on open quantum systems, 2004, URL: www.cmmp.ucl.ac.uk/ajf/course-notes.pdf.
    • (2004)
    • Fisher, A.J.1
  • 30
    • 33645297114 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.124801
    • A. Gover, Phys. Rev. Lett. 96, 124801 (2006). 10.1103/PhysRevLett.96. 124801
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 124801
    • Gover, A.1
  • 31
    • 67650295106 scopus 로고    scopus 로고
    • note
    • In practice one could observe a loss of concurrence before this time, however, defining the time scale in this way is preferred since it is more meaningful to speak of the time taken for the spins to completely disentangle from each other as opposed to the time taken for them to evolve to some arbitrary value of concurrence.
  • 32
    • 84869354468 scopus 로고    scopus 로고
    • We note for completeness that the time taken for the concurrence to decay to the value C is given by τC = 3π 8 ln (3 2C+1) □
    • We note for completeness that the time taken for the concurrence to decay to the value C is given by τC = 3π 8 ln (3 2C+1) c6 μ2 a3.
  • 34
    • 84869370186 scopus 로고    scopus 로고
    • However notice the slight difference in notation, d β□ ′ →Δβ.
    • However notice the slight difference in notation, d β□ ′ →Δβ.
  • 35
    • 84869370184 scopus 로고    scopus 로고
    • See Eq. (11.117) of although note the typographical error in the argument of the last boost which should read Aboost (Δβ) instead of Aboost (δβ). This error has been confirmed via private correspondence with
    • See Eq. (11.117) of although note the typographical error in the argument of the last boost which should read Aboost (Δβ) instead of Aboost (δβ). This error has been confirmed via private correspondence with J. D. Jackson.
    • Jackson, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.