메뉴 건너뛰기




Volumn 42, Issue 11-12, 2009, Pages 1082-1088

Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling

Author keywords

Bayesian neural network; Face milling; Regression; Support Vector Machines; Surface roughness

Indexed keywords

BAYESIAN NEURAL NETWORK; BAYESIAN NEURAL NETWORKS; CUTTING PARAMETERS; CUTTING SPEED; DEPTH OF CUT; FACE MILLING; MODELING METHODOLOGY; PREDICTION ERRORS; REGRESSION; THREE MODELS; TRAINING DATASET;

EID: 67650270096     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-008-1678-z     Document Type: Article
Times cited : (77)

References (20)
  • 1
    • 33750343161 scopus 로고    scopus 로고
    • Milling surface roughness prediction using evolutionary programming methods
    • O Colak C Kurbanoglu MC Kayacan 2005 Milling surface roughness prediction using evolutionary programming methods Mater Des 28 657 666
    • (2005) Mater des , vol.28 , pp. 657-666
    • Colak, O.1    Kurbanoglu, C.2    Kayacan, M.C.3
  • 3
    • 0038004821 scopus 로고    scopus 로고
    • Surface roughness prediction technique for CNC end-milling
    • MS Lou JC Chen CM Li 1998 Surface roughness prediction technique for CNC end-milling J Inf Technol 15 1 2 6
    • (1998) J Inf Technol , vol.15 , Issue.1 , pp. 2-6
    • Lou, M.S.1    Chen, J.C.2    Li, C.M.3
  • 4
    • 44749087329 scopus 로고    scopus 로고
    • Study on prediction of surface quality in machining process
    • C Lu 2008 Study on prediction of surface quality in machining process J Mater Process Technol 205 439 450
    • (2008) J Mater Process Technol , vol.205 , pp. 439-450
    • Lu, C.1
  • 5
    • 27344460096 scopus 로고    scopus 로고
    • Application of response surface methodology in the optimization of cutting conditions for surface roughness
    • DOI 10.1016/j.jmatprotec.2005.04.096, PII S0924013605004814
    • H Oktem T Erzurumlu H Kurtaran 2005 Application of response surface methodology in the optimization of cutting conditions for surface roughness J Mater Process Technol 170 11 16 (Pubitemid 41526145)
    • (2005) Journal of Materials Processing Technology , vol.170 , Issue.1-2 , pp. 11-16
    • Oktem, H.1    Erzurumlu, T.2    Kurtaran, H.3
  • 6
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
    • DOI 10.1016/S0736-5845(02)00005-4, PII S0736584502000054
    • PG Benardos GC Vosniakos 2002 Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments Robot Comput Integr Manuf 18 343 354 (Pubitemid 35405670)
    • (2002) Robotics and Computer-Integrated Manufacturing , vol.18 , Issue.5-6 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 7
    • 39949083945 scopus 로고    scopus 로고
    • Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach
    • IA El-Sonbaty UA Khashaba AI Selmy AI Ali 2008 Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach J Mater Process Technol 200 271 278
    • (2008) J Mater Process Technol , vol.200 , pp. 271-278
    • El-Sonbaty, I.A.1    Khashaba, U.A.2    Selmy, A.I.3    Ali, A.I.4
  • 9
    • 10444225451 scopus 로고    scopus 로고
    • Tool breakage detection using support vector machine learning in a milling process
    • S Choa S Asfoura A Onarb N Kaundinya 2005 Tool breakage detection using support vector machine learning in a milling process Int J Mach Tools Manuf 45 241 249
    • (2005) Int J Mach Tools Manuf , vol.45 , pp. 241-249
    • Choa, S.1    Asfoura, S.2    Onarb, A.3    Kaundinya, N.4
  • 10
    • 54049115182 scopus 로고    scopus 로고
    • Tool breakage diagnosis in face milling by support vector machine
    • doi: 10.1016/j.jmatprotec.2008.01.033
    • Hsueh, YW, Yang CY (2008) Tool breakage diagnosis in face milling by support vector machine. J. Mater. Process. Tech. doi: 10.1016/j.jmatprotec.2008. 01.033
    • (2008) J. Mater. Process. Tech.
    • Hsueh, Y.W.1    Yang, C.Y.2
  • 12
    • 0036825821 scopus 로고    scopus 로고
    • Kernel methods: A survey of current techniques
    • DOI 10.1016/S0925-2312(01)00643-9, PII S0925231201006439
    • C Campbell 2002 Kernel methods: a survey of current techniques Neurocomputing 48 63 84 (Pubitemid 36221489)
    • (2002) Neurocomputing , vol.48 , pp. 63-84
    • Campbell, C.1
  • 17
    • 0033561894 scopus 로고    scopus 로고
    • On cross-validation for model selection
    • I Rivals L Personnaz 1999 On cross-validation for model selection Neural Comput 11 4 863 870
    • (1999) Neural Comput , vol.11 , Issue.4 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 18
    • 0032251894 scopus 로고    scopus 로고
    • Convergence properties of the Nelder-Mead simplex method in low dimensions
    • JC Lagarias JA Reeds MH Wright PE Wright 1998 Convergence properties of the Nelder-Mead simplex method in low dimensions SIAM J Optim 9 1 112 147
    • (1998) SIAM J Optim , vol.9 , Issue.1 , pp. 112-147
    • Lagarias, J.C.1    Reeds, J.A.2    Wright, M.H.3    Wright, P.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.