메뉴 건너뛰기




Volumn 79, Issue 24, 2009, Pages

Self-consistent calculation of metamaterials with gain

Author keywords

[No Author keywords available]

Indexed keywords


EID: 67650073269     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.79.241104     Document Type: Article
Times cited : (160)

References (23)
  • 1
    • 34247268776 scopus 로고    scopus 로고
    • 10.1038/nphoton.2006.49
    • V. M. Shalaev, Nature Photon. 1, 41 (2007). 10.1038/nphoton.2006.49
    • (2007) Nature Photon. , vol.1 , pp. 41
    • Shalaev, V.M.1
  • 2
    • 33846670120 scopus 로고    scopus 로고
    • 10.1126/science.1136481
    • C. M. Soukoulis, Science 315, 47 (2007). 10.1126/science.1136481
    • (2007) Science , vol.315 , pp. 47
    • Soukoulis, C.M.1
  • 3
    • 0034296247 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.85.3966
    • J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). 10.1103/PhysRevLett.85. 3966
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 3966
    • Pendry, J.B.1
  • 4
    • 33750336551 scopus 로고    scopus 로고
    • 10.1126/science.1133628
    • D. Schurig, Science 314, 977 (2006). 10.1126/science.1133628
    • (2006) Science , vol.314 , pp. 977
    • Schurig, D.1
  • 5
    • 33745511017 scopus 로고    scopus 로고
    • 10.1126/science.1126493
    • U. Leonhardt, Science 312, 1777 (2006). 10.1126/science.1126493
    • (2006) Science , vol.312 , pp. 1777
    • Leonhardt, U.1
  • 6
    • 0042386444 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.91.037401;
    • A. A. Zharov, Phys. Rev. Lett. 91, 037401 (2003) 10.1103/PhysRevLett.91. 037401
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 037401
    • Zharov, A.A.1
  • 7
    • 37649029888 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.69.241101
    • S. O'Brien, Phys. Rev. B 69, 241101 (R) (2004). 10.1103/PhysRevB.69. 241101
    • (2004) Phys. Rev. B , vol.69 , pp. 241101
    • O'Brien, S.1
  • 8
    • 33745884408 scopus 로고    scopus 로고
    • 10.1364/OL.31.001800
    • G. Dolling, Opt. Lett. 31, 1800 (2006). 10.1364/OL.31.001800
    • (2006) Opt. Lett. , vol.31 , pp. 1800
    • Dolling, G.1
  • 9
    • 0003434416 scopus 로고
    • Hill Valley, California
    • A. E. Siegman, Lasers (Hill Valley, California, 1986), Chaps., and.
    • (1986) Lasers
    • Siegman, A.E.1
  • 10
    • 67650015398 scopus 로고    scopus 로고
    • The real and the imaginary parts of the gain profile are given by P/ ε0 E= χ′ +i χ″, where χ′ =- χ0″ Δx/ (1+Δ x2) and χ″ = χ0″ / (1+Δ x2) with Δx=2 (ω- ωa) / Γa and χ0″ =- σa ΔN/ (ε0 ωa Γa), where ΔN= N2 - N1.
    • The real and the imaginary parts of the gain profile are given by P/ ε0 E= χ′ +i χ″, where χ′ =- χ0″ Δx/ (1+Δ x2) and χ″ = χ0″ / (1+Δ x2) with Δx=2 (ω- ωa) / Γa and χ0″ =- σa ΔN/ (ε0 ωa Γa), where ΔN= N2 - N1.
  • 13
    • 33646228887 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.73.165125
    • P. Bermel, Phys. Rev. B 73, 165125 (2006). 10.1103/PhysRevB.73.165125
    • (2006) Phys. Rev. B , vol.73 , pp. 165125
    • Bermel, P.1
  • 14
    • 67650027731 scopus 로고    scopus 로고
    • We first check that a well-defined lasing threshold exists for a gain material slab with a width of 500 nm. The pumping rate for lasing threshold is 1.6× 109 s-1, which corresponds to the incident power of 65W/ mm2 and the output power is 4× 10-3 W/ mm2. If the pumping rate is much higher than the lasing threshold, i.e., 3.5× 109 s-1, the occupation numbers N2 and N1 oscillate as a function of time and finally saturate to the stable values. For the parameters used, N2 7.5× 10-3 N0 and N1 2.0× 10-4 N0.
    • We first check that a well-defined lasing threshold exists for a gain material slab with a width of 500 nm. The pumping rate for lasing threshold is 1.6× 109 s-1, which corresponds to the incident power of 65W/ mm2 and the output power is 4× 10-3 W/ mm2. If the pumping rate is much higher than the lasing threshold, i.e., 3.5× 109 s-1, the occupation numbers N2 and N1 oscillate as a function of time and finally saturate to the stable values. For the parameters used, N2 7.5× 10-3 N0 and N1 2.0× 10-4 N0.
  • 18
    • 19144369258 scopus 로고    scopus 로고
    • 10.1063/1.1825058
    • N. M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004). 10.1063/1.1825058
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 5040
    • Lawandy, N.M.1
  • 19
    • 57149122963 scopus 로고    scopus 로고
    • 10.1364/OE.16.019785
    • M. Wegener, Opt. Express 16, 19785 (2008). 10.1364/OE.16.019785
    • (2008) Opt. Express , vol.16 , pp. 19785
    • Wegener, M.1
  • 20
    • 0037092743 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.65.195104
    • D. R. Smith, Phys. Rev. B 65, 195104 (2002). 10.1103/PhysRevB.65.195104
    • (2002) Phys. Rev. B , vol.65 , pp. 195104
    • Smith, D.R.1
  • 21
    • 67650055828 scopus 로고    scopus 로고
    • The extinction coefficient (amplification coefficient) of the gain material can be calculated from α=ω χ″ / (2c εr) given in Chap. 7 of Ref.. For the pumping rate Γpump =1.4× 109 s-1 and f=100THz, we obtain ΔN=6.9× 10-3 Ni [Ni = No (t=0) =5.0× 1023 / m3], and hence α=-1.50× 103 cm-1 at the resonance. In our case for 97 THz, we get α=-1.39× 103 cm-1.
    • The extinction coefficient (amplification coefficient) of the gain material can be calculated from α=ω χ″ / (2c εr) given in Chap. 7 of Ref.. For the pumping rate Γpump =1.4× 109 s-1 and f=100THz, we obtain ΔN=6.9× 10-3 Ni [Ni = No (t=0) =5.0× 1023 / m3], and hence α=-1.50× 103 cm-1 at the resonance. In our case for 97 THz, we get α=-1.39× 103 cm-1.
  • 23
    • 44849085495 scopus 로고    scopus 로고
    • 10.1038/nphoton.2008.82
    • N. I. Zheludev, Nature Photon. 2, 351 (2008). 10.1038/nphoton.2008.82
    • (2008) Nature Photon. , vol.2 , pp. 351
    • Zheludev, N.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.