-
1
-
-
34247268776
-
-
10.1038/nphoton.2006.49
-
V. M. Shalaev, Nature Photon. 1, 41 (2007). 10.1038/nphoton.2006.49
-
(2007)
Nature Photon.
, vol.1
, pp. 41
-
-
Shalaev, V.M.1
-
2
-
-
33846670120
-
-
10.1126/science.1136481
-
C. M. Soukoulis, Science 315, 47 (2007). 10.1126/science.1136481
-
(2007)
Science
, vol.315
, pp. 47
-
-
Soukoulis, C.M.1
-
3
-
-
0034296247
-
-
10.1103/PhysRevLett.85.3966
-
J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). 10.1103/PhysRevLett.85. 3966
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3966
-
-
Pendry, J.B.1
-
4
-
-
33750336551
-
-
10.1126/science.1133628
-
D. Schurig, Science 314, 977 (2006). 10.1126/science.1133628
-
(2006)
Science
, vol.314
, pp. 977
-
-
Schurig, D.1
-
5
-
-
33745511017
-
-
10.1126/science.1126493
-
U. Leonhardt, Science 312, 1777 (2006). 10.1126/science.1126493
-
(2006)
Science
, vol.312
, pp. 1777
-
-
Leonhardt, U.1
-
6
-
-
0042386444
-
-
10.1103/PhysRevLett.91.037401;
-
A. A. Zharov, Phys. Rev. Lett. 91, 037401 (2003) 10.1103/PhysRevLett.91. 037401
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 037401
-
-
Zharov, A.A.1
-
7
-
-
37649029888
-
-
10.1103/PhysRevB.69.241101
-
S. O'Brien, Phys. Rev. B 69, 241101 (R) (2004). 10.1103/PhysRevB.69. 241101
-
(2004)
Phys. Rev. B
, vol.69
, pp. 241101
-
-
O'Brien, S.1
-
8
-
-
33745884408
-
-
10.1364/OL.31.001800
-
G. Dolling, Opt. Lett. 31, 1800 (2006). 10.1364/OL.31.001800
-
(2006)
Opt. Lett.
, vol.31
, pp. 1800
-
-
Dolling, G.1
-
9
-
-
0003434416
-
-
Hill Valley, California
-
A. E. Siegman, Lasers (Hill Valley, California, 1986), Chaps., and.
-
(1986)
Lasers
-
-
Siegman, A.E.1
-
10
-
-
67650015398
-
-
The real and the imaginary parts of the gain profile are given by P/ ε0 E= χ′ +i χ″, where χ′ =- χ0″ Δx/ (1+Δ x2) and χ″ = χ0″ / (1+Δ x2) with Δx=2 (ω- ωa) / Γa and χ0″ =- σa ΔN/ (ε0 ωa Γa), where ΔN= N2 - N1.
-
The real and the imaginary parts of the gain profile are given by P/ ε0 E= χ′ +i χ″, where χ′ =- χ0″ Δx/ (1+Δ x2) and χ″ = χ0″ / (1+Δ x2) with Δx=2 (ω- ωa) / Γa and χ0″ =- σa ΔN/ (ε0 ωa Γa), where ΔN= N2 - N1.
-
-
-
-
13
-
-
33646228887
-
-
10.1103/PhysRevB.73.165125
-
P. Bermel, Phys. Rev. B 73, 165125 (2006). 10.1103/PhysRevB.73.165125
-
(2006)
Phys. Rev. B
, vol.73
, pp. 165125
-
-
Bermel, P.1
-
14
-
-
67650027731
-
-
We first check that a well-defined lasing threshold exists for a gain material slab with a width of 500 nm. The pumping rate for lasing threshold is 1.6× 109 s-1, which corresponds to the incident power of 65W/ mm2 and the output power is 4× 10-3 W/ mm2. If the pumping rate is much higher than the lasing threshold, i.e., 3.5× 109 s-1, the occupation numbers N2 and N1 oscillate as a function of time and finally saturate to the stable values. For the parameters used, N2 7.5× 10-3 N0 and N1 2.0× 10-4 N0.
-
We first check that a well-defined lasing threshold exists for a gain material slab with a width of 500 nm. The pumping rate for lasing threshold is 1.6× 109 s-1, which corresponds to the incident power of 65W/ mm2 and the output power is 4× 10-3 W/ mm2. If the pumping rate is much higher than the lasing threshold, i.e., 3.5× 109 s-1, the occupation numbers N2 and N1 oscillate as a function of time and finally saturate to the stable values. For the parameters used, N2 7.5× 10-3 N0 and N1 2.0× 10-4 N0.
-
-
-
-
18
-
-
19144369258
-
-
10.1063/1.1825058
-
N. M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004). 10.1063/1.1825058
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 5040
-
-
Lawandy, N.M.1
-
19
-
-
57149122963
-
-
10.1364/OE.16.019785
-
M. Wegener, Opt. Express 16, 19785 (2008). 10.1364/OE.16.019785
-
(2008)
Opt. Express
, vol.16
, pp. 19785
-
-
Wegener, M.1
-
20
-
-
0037092743
-
-
10.1103/PhysRevB.65.195104
-
D. R. Smith, Phys. Rev. B 65, 195104 (2002). 10.1103/PhysRevB.65.195104
-
(2002)
Phys. Rev. B
, vol.65
, pp. 195104
-
-
Smith, D.R.1
-
21
-
-
67650055828
-
-
The extinction coefficient (amplification coefficient) of the gain material can be calculated from α=ω χ″ / (2c εr) given in Chap. 7 of Ref.. For the pumping rate Γpump =1.4× 109 s-1 and f=100THz, we obtain ΔN=6.9× 10-3 Ni [Ni = No (t=0) =5.0× 1023 / m3], and hence α=-1.50× 103 cm-1 at the resonance. In our case for 97 THz, we get α=-1.39× 103 cm-1.
-
The extinction coefficient (amplification coefficient) of the gain material can be calculated from α=ω χ″ / (2c εr) given in Chap. 7 of Ref.. For the pumping rate Γpump =1.4× 109 s-1 and f=100THz, we obtain ΔN=6.9× 10-3 Ni [Ni = No (t=0) =5.0× 1023 / m3], and hence α=-1.50× 103 cm-1 at the resonance. In our case for 97 THz, we get α=-1.39× 103 cm-1.
-
-
-
-
23
-
-
44849085495
-
-
10.1038/nphoton.2008.82
-
N. I. Zheludev, Nature Photon. 2, 351 (2008). 10.1038/nphoton.2008.82
-
(2008)
Nature Photon.
, vol.2
, pp. 351
-
-
Zheludev, N.I.1
|