-
3
-
-
0033269653
-
Penalty and barrier methods: A unified framework
-
Auslender, A. 1999. Penalty and barrier methods: A unified framework. SIAM J. Optim. 10 653-671.
-
(1999)
SIAM J. Optim
, vol.10
, pp. 653-671
-
-
Auslender, A.1
-
5
-
-
0031072276
-
Asymptotic analysis for penalty and barrier methods in convex and linear programming
-
Auslender, A., R. Cominetti, M. Haddou. 1997. Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22 43-62.
-
(1997)
Math. Oper. Res
, vol.22
, pp. 43-62
-
-
Auslender, A.1
Cominetti, R.2
Haddou, M.3
-
6
-
-
0343372862
-
A smoothing technique for nondifferentiable optimization problems
-
Ben-Tal, A., M. Teboulle. 1989. A smoothing technique for nondifferentiable optimization problems. Lecture Notes Math. 1405 1-11.
-
(1989)
Lecture Notes Math
, vol.1405
, pp. 1-11
-
-
Ben-Tal, A.1
Teboulle, M.2
-
7
-
-
0000665525
-
Approximation procedures based on the method of multipliers
-
Bertsekas, D. P. 1977. Approximation procedures based on the method of multipliers. J. Optim. Theory Appl. 23 487-510.
-
(1977)
J. Optim. Theory Appl
, vol.23
, pp. 487-510
-
-
Bertsekas, D.P.1
-
9
-
-
0030104686
-
A class of smoothing functions for nonlinear and mixed complementarity problems
-
Chen, C., O. L. Mangasarian. 1996. A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5 97-138.
-
(1996)
Comput. Optim. Appl
, vol.5
, pp. 97-138
-
-
Chen, C.1
Mangasarian, O.L.2
-
10
-
-
0000882113
-
Newton's method for convex programming and Tchebycheff approximation
-
1, 253-268
-
Cheney, E., A. A. Goldstein. 1959. Newton's method for convex programming and Tchebycheff approximation. Numer. Math. 1, 253-268.
-
(1959)
Numer. Math
-
-
Cheney, E.1
Goldstein, A.A.2
-
11
-
-
34250409962
-
A central cutting plane algorithm for the convex programming problem
-
Elzinga, J., T. G. Moore. 1975. A central cutting plane algorithm for the convex programming problem. Math. Programming 8 34-145.
-
(1975)
Math. Programming
, vol.8
, pp. 34-145
-
-
Elzinga, J.1
Moore, T.G.2
-
12
-
-
0030247766
-
Solving min-max problems and linear semi-infinite programs
-
Fang, S. C., S. Y. Wu. 1996. Solving min-max problems and linear semi-infinite programs. Comput. Math. Appl. 32 87-93.
-
(1996)
Comput. Math. Appl
, vol.32
, pp. 87-93
-
-
Fang, S.C.1
Wu, S.Y.2
-
13
-
-
0000748472
-
A regularization method for solving finite convex min-max problems
-
Gigola, C., S. Gomez. 1990. A regularization method for solving finite convex min-max problems. SIAM J. Numer. Anal. 27 1621-1634.
-
(1990)
SIAM J. Numer. Anal
, vol.27
, pp. 1621-1634
-
-
Gigola, C.1
Gomez, S.2
-
14
-
-
67649952495
-
Adaptative methods of solving ill-posed semi-infinite convex optimization problems
-
Kaplan, A. A., R. Tichatschke. 1992. Adaptative methods of solving ill-posed semi-infinite convex optimization problems. Soviet Math. Dokl. 45 119-123.
-
(1992)
Soviet Math. Dokl
, vol.45
, pp. 119-123
-
-
Kaplan, A.A.1
Tichatschke, R.2
-
15
-
-
0001547779
-
The cutting-plane method for solving convex programs
-
Kelley, J. E. 1960. The cutting-plane method for solving convex programs. SIAM J. Control Optim. 8 703-712.
-
(1960)
SIAM J. Control Optim
, vol.8
, pp. 703-712
-
-
Kelley, J.E.1
-
16
-
-
0032222094
-
An unconstrained convex programming approach to linear semi-infinite programming
-
Lin, C. J., S. C. Fang, S. Y. Wu. 1998. An unconstrained convex programming approach to linear semi-infinite programming. SIAM J. Optim. 8 443-456.
-
(1998)
SIAM J. Optim
, vol.8
, pp. 443-456
-
-
Lin, C.J.1
Fang, S.C.2
Wu, S.Y.3
-
18
-
-
17444406259
-
Smooth minimization of nonsmooth functions
-
Nesterov, Y 2005. Smooth minimization of nonsmooth functions. Math. Programming 103A 127-152.
-
(2005)
Math. Programming
, vol.103 A
, pp. 127-152
-
-
Nesterov, Y.1
-
19
-
-
0344664096
-
Algorithms for finite and semi-infinite min-max-min problems using adaptative smoothing techniques
-
Polak, E., J. O. Royset. 2003. Algorithms for finite and semi-infinite min-max-min problems using adaptative smoothing techniques. J. Optim. Theory Appl. 119 421-457.
-
(2003)
J. Optim. Theory Appl
, vol.119
, pp. 421-457
-
-
Polak, E.1
Royset, J.O.2
-
20
-
-
34249832214
-
A barrier function method for minimax problems
-
Polak, E., J. E. Higgins, D. Q. Mayne. 1992. A barrier function method for minimax problems. Math. Programming 54A 155-176.
-
(1992)
Math. Programming
, vol.54 A
, pp. 155-176
-
-
Polak, E.1
Higgins, J.E.2
Mayne, D.Q.3
-
21
-
-
0344196668
-
Algorithms with adaptative smoothing for finite and semi-infinite min-max problems
-
Polak, E., J. O. Royset, R. S. Womersley. 2003. Algorithms with adaptative smoothing for finite and semi-infinite min-max problems. J. Optim. Theory Appl. 119 459-484.
-
(2003)
J. Optim. Theory Appl
, vol.119
, pp. 459-484
-
-
Polak, E.1
Royset, J.O.2
Womersley, R.S.3
-
22
-
-
67649898035
-
-
Reemtsen, R., S. Görner. 1998. Numerical methods for semi-infinite programming: A survey. Nonconvex Optim. Appl. 25 195-275.
-
Reemtsen, R., S. Görner. 1998. Numerical methods for semi-infinite programming: A survey. Nonconvex Optim. Appl. 25 195-275.
-
-
-
-
23
-
-
67649932272
-
-
Remez, E. 1934. Sur la détermination des polynômes d'approximation de degré donne. Comm. Soc. Math. Kharkoff et Inst. Sci. Math. et Mecan. 10 41-63.
-
Remez, E. 1934. Sur la détermination des polynômes d'approximation de degré donne. Comm. Soc. Math. Kharkoff et Inst. Sci. Math. et Mecan. 10 41-63.
-
-
-
-
24
-
-
0004267646
-
-
Princeton University Press, Princeton, NJ
-
Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
25
-
-
21344458304
-
An interior-point method for semi-infinite programming problems
-
Schattler, U. 1996. An interior-point method for semi-infinite programming problems. Annals Oper. Res. 62 277-301.
-
(1996)
Annals Oper. Res
, vol.62
, pp. 277-301
-
-
Schattler, U.1
-
26
-
-
4444297543
-
Solving continuous min-max problems by an iterative entropic regularization method
-
Sheu, R. L., J. Y Lin. 2004. Solving continuous min-max problems by an iterative entropic regularization method. J. Optim. Theory Appl. 121 597-612.
-
(2004)
J. Optim. Theory Appl
, vol.121
, pp. 597-612
-
-
Sheu, R.L.1
Lin, J.Y.2
-
27
-
-
0033247732
-
Combined entropic regularization and path-following method for solving finite convex min-max problems subject to infinitely many linear constraints
-
Sheu, R. L., S. Y. Wu. 1999. Combined entropic regularization and path-following method for solving finite convex min-max problems subject to infinitely many linear constraints. J. Optim. Theory Appl. 101 167-190.
-
(1999)
J. Optim. Theory Appl
, vol.101
, pp. 167-190
-
-
Sheu, R.L.1
Wu, S.Y.2
-
28
-
-
0025559558
-
Nonlinear perturbation for linear semi-infinite optimization problems
-
IEEE, Honolulu
-
Teboulle, M. 1990. Nonlinear perturbation for linear semi-infinite optimization problems. Proc. 29th IEEE Conf. Decision and Control, Vol. 4. IEEE, Honolulu, 2477-2478.
-
(1990)
Proc. 29th IEEE Conf. Decision and Control
, vol.4
, pp. 2477-2478
-
-
Teboulle, M.1
-
29
-
-
0000825179
-
A simple computational procedure for optimization problems with functional inequality constraints
-
Teo, K. L., C. J. Goh. 1987. A simple computational procedure for optimization problems with functional inequality constraints. IEEE Trans. Automat. Control 32 940-941.
-
(1987)
IEEE Trans. Automat. Control
, vol.32
, pp. 940-941
-
-
Teo, K.L.1
Goh, C.J.2
-
30
-
-
0027589935
-
-
Teo, K. L., V. Rehbock, L. S. Jennings. 1993. A new computational algorithm for functional inequality constrained optimization problems. Automatica J. International Federation of Automatic Control 29 789-792.
-
Teo, K. L., V. Rehbock, L. S. Jennings. 1993. A new computational algorithm for functional inequality constrained optimization problems. Automatica J. International Federation of Automatic Control 29 789-792.
-
-
-
-
31
-
-
0008405967
-
The supporting hyperplane method for unimodal programming
-
Veinott, A. F. 1967. The supporting hyperplane method for unimodal programming. Oper. Res. 15 147-152.
-
(1967)
Oper. Res
, vol.15
, pp. 147-152
-
-
Veinott, A.F.1
|