메뉴 건너뛰기




Volumn 160, Issue 17, 2009, Pages 2505-2523

An enhanced fuzzy linear regression model with more flexible spreads

Author keywords

Fuzzy linear regression; Fuzzy number; Least square method; Linear programming

Indexed keywords

DEPENDENT VARIABLES; FUZZY LINEAR REGRESSION; FUZZY NUMBER; INDEPENDENT VARIABLES; LEAST-SQUARE METHOD; NUMERICAL EXAMPLE;

EID: 67649949571     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2009.02.023     Document Type: Article
Times cited : (48)

References (29)
  • 2
    • 48749132540 scopus 로고    scopus 로고
    • A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy
    • Chen S.P., and Dang J.F. A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy. Information Sciences 178 (2008) 3973-3988
    • (2008) Information Sciences , vol.178 , pp. 3973-3988
    • Chen, S.P.1    Dang, J.F.2
  • 3
    • 38349025453 scopus 로고    scopus 로고
    • Management of uncertainty in statistical reasoning: the case of regression analysis
    • Coppi R. Management of uncertainty in statistical reasoning: the case of regression analysis. International Journal of Approximate Reasoning 47 3 (2008) 284-305
    • (2008) International Journal of Approximate Reasoning , vol.47 , Issue.3 , pp. 284-305
    • Coppi, R.1
  • 4
    • 33748065155 scopus 로고    scopus 로고
    • Regression analysis with fuzzy informational paradigm: a least-squares approach using membership function information
    • Coppi R., and D'Urso P. Regression analysis with fuzzy informational paradigm: a least-squares approach using membership function information. International Journal of Pure and Applied Mathematics 8 (2003) 279-306
    • (2003) International Journal of Pure and Applied Mathematics , vol.8 , pp. 279-306
    • Coppi, R.1    D'Urso, P.2
  • 6
    • 0000325717 scopus 로고
    • Fuzzy least squares
    • Diamond P. Fuzzy least squares. Information Science 46 (1988) 141-157
    • (1988) Information Science , vol.46 , pp. 141-157
    • Diamond, P.1
  • 8
    • 0037454064 scopus 로고    scopus 로고
    • Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data
    • D'Urso P. Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Computational Statistics and Data Analysis 42 1-2 (2003) 47-72
    • (2003) Computational Statistics and Data Analysis , vol.42 , Issue.1-2 , pp. 47-72
    • D'Urso, P.1
  • 10
    • 33750348263 scopus 로고    scopus 로고
    • An omission approach for detecting outliers in fuzzy regression models
    • Hung W.L., and Yang M.S. An omission approach for detecting outliers in fuzzy regression models. Fuzzy Sets and Systems 157 23 (2006) 3109-3122
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.23 , pp. 3109-3122
    • Hung, W.L.1    Yang, M.S.2
  • 11
    • 0037117204 scopus 로고    scopus 로고
    • A fuzzy linear regression model with better explanatory power
    • Kao C., and Chyu C.-L. A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems 126 (2002) 401-409
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 401-409
    • Kao, C.1    Chyu, C.-L.2
  • 12
  • 15
    • 0000662569 scopus 로고    scopus 로고
    • Evaluation of fuzzy linear regression models by comparing membership functions
    • Kim B., and Bishu R.R. Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems 100 (1998) 343-352
    • (1998) Fuzzy Sets and Systems , vol.100 , pp. 343-352
    • Kim, B.1    Bishu, R.R.2
  • 17
    • 3242675121 scopus 로고    scopus 로고
    • A mathematical-programming approach to fuzzy linear regression analysis
    • Nasrabadi M.M., and Nasrabadi E. A mathematical-programming approach to fuzzy linear regression analysis. Applied Mathematics and Computation 155 3 (2004) 873-881
    • (2004) Applied Mathematics and Computation , vol.155 , Issue.3 , pp. 873-881
    • Nasrabadi, M.M.1    Nasrabadi, E.2
  • 19
  • 20
    • 0028462787 scopus 로고
    • Properties of certain fuzzy linear regression methods
    • Redden D.T., and Woodall W.H. Properties of certain fuzzy linear regression methods. Fuzzy Sets and Systems 64 (1994) 361-375
    • (1994) Fuzzy Sets and Systems , vol.64 , pp. 361-375
    • Redden, D.T.1    Woodall, W.H.2
  • 21
    • 0009976071 scopus 로고
    • Fuzzy linear regression and its applications
    • Kacprzyk J., and Fedrizzi M. (Eds), Physica-Verlag, Heidelberg
    • Sakawa M., and Yano H. Fuzzy linear regression and its applications. In: Kacprzyk J., and Fedrizzi M. (Eds). Fuzzy Regression Analysis (1992), Physica-Verlag, Heidelberg 61-80
    • (1992) Fuzzy Regression Analysis , pp. 61-80
    • Sakawa, M.1    Yano, H.2
  • 22
    • 0001563202 scopus 로고
    • Multiobjective fuzzy linear regression analysis for fuzzy input-output data
    • Sakawa M., and Yano H. Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets and Systems 47 (1992) 173-181
    • (1992) Fuzzy Sets and Systems , vol.47 , pp. 173-181
    • Sakawa, M.1    Yano, H.2
  • 26
    • 0037119255 scopus 로고    scopus 로고
    • Multiobjective fuzzy regression with central tendency and possibilistic properties
    • Tran L., and Duckstein L. Multiobjective fuzzy regression with central tendency and possibilistic properties. Fuzzy Sets and Systems 130 (2002) 21-31
    • (2002) Fuzzy Sets and Systems , vol.130 , pp. 21-31
    • Tran, L.1    Duckstein, L.2
  • 27
    • 0037117193 scopus 로고    scopus 로고
    • Fuzzy least-squares linear regression analysis for fuzzy input-output data
    • Yang M.S., and Lin T.S. Fuzzy least-squares linear regression analysis for fuzzy input-output data. Fuzzy Sets and Systems 126 (2002) 389-399
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 389-399
    • Yang, M.S.1    Lin, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.