메뉴 건너뛰기




Volumn , Issue , 2009, Pages 138-149

Forward decay: A practical time decay model for streaming systems

Author keywords

[No Author keywords available]

Indexed keywords

DATA STREAMING; DECAY FUNCTION; EFFICIENT ALGORITHM; EMPIRICAL EVIDENCE; EXPONENTIAL DECAYS; EXPONENTIAL TIME; FIXED POINTS; NEW CLASS; POLYNOMIAL DECAY; PRACTICAL MODEL; PRODUCTION DATA; SCALABLE IMPLEMENTATION; TEMPORAL DATA; TIME DECAY;

EID: 67649657688     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2009.65     Document Type: Conference Paper
Times cited : (85)

References (38)
  • 2
    • 84893850265 scopus 로고    scopus 로고
    • On biased reservoir sampling in the presence of stream evolution
    • C. C. Aggarwal. On biased reservoir sampling in the presence of stream evolution. In VLDB, 2006.
    • (2006) VLDB
    • Aggarwal, C.C.1
  • 3
    • 36949005787 scopus 로고    scopus 로고
    • Estimating sums of arbitrary selections with few probes
    • N. Alon, N. Duffield, C. Lund, and M. Thorup. Estimating sums of arbitrary selections with few probes. In PODS, 2005.
    • (2005) PODS
    • Alon, N.1    Duffield, N.2    Lund, C.3    Thorup, M.4
  • 4
    • 3142749702 scopus 로고    scopus 로고
    • Approximate counts and quantiles over sliding windows
    • A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In PODS, 2004.
    • (2004) PODS
    • Arasu, A.1    Manku, G.S.2
  • 5
    • 10644244988 scopus 로고    scopus 로고
    • Sampling from a moving window over streaming data
    • B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. In SODA, 2002.
    • (2002) SODA
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 6
    • 36849066457 scopus 로고    scopus 로고
    • A deterministic algorithm for summarizing asynchronous streams over a sliding window
    • C. Busch and S. Tirthapura. A deterministic algorithm for summarizing asynchronous streams over a sliding window. In STACS, 2007.
    • (2007) STACS
    • Busch, C.1    Tirthapura, S.2
  • 7
    • 67649661029 scopus 로고    scopus 로고
    • D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: a new class of data management applications. In VLDB, 2002.
    • D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: a new class of data management applications. In VLDB, 2002.
  • 9
    • 1142287629 scopus 로고    scopus 로고
    • Maintaining time-decaying stream aggregates
    • E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. In PODS, 2003.
    • (2003) PODS
    • Cohen, E.1    Strauss, M.2
  • 11
    • 52649083637 scopus 로고    scopus 로고
    • Exponentially decayed aggregates on data streams
    • G. Cormode, F. Korn, and S. Tirthapura. Exponentially decayed aggregates on data streams. In ICDE, 2008.
    • (2008) ICDE
    • Cormode, G.1    Korn, F.2    Tirthapura, S.3
  • 12
    • 57349194276 scopus 로고    scopus 로고
    • Time decaying aggregates in out-of-order streams
    • G. Cormode, F. Korn, and S. Tirthapura. Time decaying aggregates in out-of-order streams. In PODS, 2008.
    • (2008) PODS
    • Cormode, G.1    Korn, F.2    Tirthapura, S.3
  • 13
    • 67649636477 scopus 로고    scopus 로고
    • G. Cormode and S. Muthukrishnan. Estimating dominance norms of multiple data streams. In ESA, 2003.
    • G. Cormode and S. Muthukrishnan. Estimating dominance norms of multiple data streams. In ESA, 2003.
  • 14
    • 36849095546 scopus 로고    scopus 로고
    • Time-decaying sketches for sensor data aggregation
    • G. Cormode, S. Tirthapura, and B. Xu. Time-decaying sketches for sensor data aggregation. In PODC, 2007.
    • (2007) PODC
    • Cormode, G.1    Tirthapura, S.2    Xu, B.3
  • 15
    • 0036361106 scopus 로고    scopus 로고
    • Gigascope: High performance network monitoring with an SQL interface
    • C. Cranor, L. Gao, T. Johnson, and O. Spatscheck. Gigascope: High performance network monitoring with an SQL interface. In SIGMOD, 2002.
    • (2002) SIGMOD
    • Cranor, C.1    Gao, L.2    Johnson, T.3    Spatscheck, O.4
  • 17
    • 2442462968 scopus 로고    scopus 로고
    • Maintaining stream statistics over sliding windows
    • M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. In SODA, 2002.
    • (2002) SODA
    • Datar, M.1    Gionis, A.2    Indyk, P.3    Motwani, R.4
  • 18
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 20
    • 0036957848 scopus 로고    scopus 로고
    • Distributed streams algorithms for sliding windows
    • P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In SPAA, 2002.
    • (2002) SPAA
    • Gibbons, P.1    Tirthapura, S.2
  • 23
    • 67649665068 scopus 로고    scopus 로고
    • Hadoop. http://hadoop.apache.org/.
    • Hadoop
  • 24
    • 0038754101 scopus 로고    scopus 로고
    • Better algorithms for high-dimensional proximity problems via asymmetric embeddings
    • P. Indyk. Better algorithms for high-dimensional proximity problems via asymmetric embeddings. In SODA, 2003.
    • (2003) SODA
    • Indyk, P.1
  • 26
    • 34250676594 scopus 로고    scopus 로고
    • A simpler and more efficient deterministic scheme for finding frequent items over sliding windows
    • L. Lee and H. Ting. A simpler and more efficient deterministic scheme for finding frequent items over sliding windows. In PODS, 2006.
    • (2006) PODS
    • Lee, L.1    Ting, H.2
  • 27
    • 19944368435 scopus 로고    scopus 로고
    • No pane, no gain: Efficient evaluation of sliding-window aggregates over data streams
    • J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD Record, 34(1):39-44, 2005.
    • (2005) SIGMOD Record , vol.34 , Issue.1 , pp. 39-44
    • Li, J.1    Maier, D.2    Tufte, K.3    Papadimos, V.4    Tucker, P.A.5
  • 28
    • 28444483527 scopus 로고    scopus 로고
    • Finding (recently) frequent items in distributed data streams
    • A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in distributed data streams. In ICDE, pages 767-778, 2005.
    • (2005) ICDE , pp. 767-778
    • Manjhi, A.1    Shkapenyuk, V.2    Dhamdhere, K.3    Olston, C.4
  • 29
    • 33745440323 scopus 로고    scopus 로고
    • Efficient computation of frequent and top-k elements in data streams
    • A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of frequent and top-k elements in data streams. In ICDT, 2005.
    • (2005) ICDT
    • Metwally, A.1    Agrawal, D.2    Abbadi, A.E.3
  • 31
    • 36849040673 scopus 로고    scopus 로고
    • Range-efficient counting of distinct elements in a massive data stream
    • A. Pavan and S. Tirthapura. Range-efficient counting of distinct elements in a massive data stream. SIAM J. on Computing, 37(2):359-379, 2007.
    • (2007) SIAM J. on Computing , vol.37 , Issue.2 , pp. 359-379
    • Pavan, A.1    Tirthapura, S.2
  • 33
    • 33750403174 scopus 로고    scopus 로고
    • Medians and beyond: New aggregation techniques for sensor networks
    • N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New aggregation techniques for sensor networks. In ACM SenSys, 2004.
    • (2004) ACM SenSys
    • Shrivastava, N.1    Buragohain, C.2    Agrawal, D.3    Suri, S.4
  • 34
    • 67649652862 scopus 로고    scopus 로고
    • Streambase. http://www.streambase.com/.
    • Streambase


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.