-
1
-
-
2442661583
-
-
1439-4235,. 10.1002/cphc.200300942
-
Y. Shen, A. R. Hosseini, M. H. Wong, and G. G. Malliaras, ChemPhysChem 1439-4235 5, 16 (2004). 10.1002/cphc.200300942
-
(2004)
ChemPhysChem
, vol.5
, pp. 16
-
-
Shen, Y.1
Hosseini, A.R.2
Wong, M.H.3
Malliaras, G.G.4
-
2
-
-
34248402010
-
-
0003-6951,. 10.1063/1.2738382
-
C. Vanoni, S. Tsujino, and T. A. Jung, Appl. Phys. Lett. 0003-6951 90, 193119 (2007). 10.1063/1.2738382
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 193119
-
-
Vanoni, C.1
Tsujino, S.2
Jung, T.A.3
-
3
-
-
34547655520
-
-
0003-6951,. 10.1063/1.2759987
-
T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Appl. Phys. Lett. 0003-6951 91, 053508 (2007). 10.1063/1.2759987
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 053508
-
-
Minari, T.1
Miyadera, T.2
Tsukagoshi, K.3
Aoyagi, Y.4
Ito, H.5
-
4
-
-
0013105933
-
-
1566-1199,. 10.1016/S1566-1199(02)00033-2
-
W. Gao and A. Kahn, Org. Electron. 1566-1199 3, 53 (2002). 10.1016/S1566-1199(02)00033-2
-
(2002)
Org. Electron.
, vol.3
, pp. 53
-
-
Gao, W.1
Kahn, A.2
-
5
-
-
0242270980
-
-
1566-1199,. 10.1016/j.orgel.2003.08.004
-
M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner, and J. Blochwitz-Nimoth, Org. Electron. 1566-1199 4, 89 (2003). 10.1016/j.orgel.2003. 08.004
-
(2003)
Org. Electron.
, vol.4
, pp. 89
-
-
Pfeiffer, M.1
Leo, K.2
Zhou, X.3
Huang, J.S.4
Hofmann, M.5
Werner, A.6
Blochwitz-Nimoth, J.7
-
6
-
-
29744468980
-
-
0163-1829,. 10.1103/PhysRevB.72.235302
-
B. H. Hamadani, H. Ding, Y. Gao, and D. Natelson, Phys. Rev. B 0163-1829 72, 235302 (2005). 10.1103/PhysRevB.72.235302
-
(2005)
Phys. Rev. B
, vol.72
, pp. 235302
-
-
Hamadani, B.H.1
Ding, H.2
Gao, Y.3
Natelson, D.4
-
7
-
-
0346977332
-
-
1566-1199,. 10.1016/S1566-1199(01)00016-7
-
J. Blochwitz, T. Fritz, M. Pfeiffer, K. Leo, D. M. Alloway, P. A. Lee, and N. R. Armstrong, Org. Electron. 1566-1199 2, 97 (2001). 10.1016/S1566- 1199(01)00016-7
-
(2001)
Org. Electron.
, vol.2
, pp. 97
-
-
Blochwitz, J.1
Fritz, T.2
Pfeiffer, M.3
Leo, K.4
Alloway, D.M.5
Lee, P.A.6
Armstrong, N.R.7
-
8
-
-
28844461576
-
-
0031-9007,. 10.1103/PhysRevLett.95.237601
-
N. Koch, S. Duhm, J. P. Rabe, A. Vollmer, and R. L. Johnson, Phys. Rev. Lett. 0031-9007 95, 237601 (2005). 10.1103/PhysRevLett.95.237601
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 237601
-
-
Koch, N.1
Duhm, S.2
Rabe, J.P.3
Vollmer, A.4
Johnson, R.L.5
-
9
-
-
0037113669
-
-
0163-1829,. 10.1103/PhysRevB.66.195336
-
A. R. Volkel, R. A. Street, and D. Knipp, Phys. Rev. B 0163-1829 66, 195336 (2002). 10.1103/PhysRevB.66.195336
-
(2002)
Phys. Rev. B
, vol.66
, pp. 195336
-
-
Volkel, A.R.1
Street, R.A.2
Knipp, D.3
-
10
-
-
19944430519
-
-
0021-8979,. 10.1063/1.1835542
-
A. R. Hosseini, M. H. Wong, Y. Shen, and G. G. Malliaras, J. Appl. Phys. 0021-8979 97, 023705 (2005). 10.1063/1.1835542
-
(2005)
J. Appl. Phys.
, vol.97
, pp. 023705
-
-
Hosseini, A.R.1
Wong, M.H.2
Shen, Y.3
Malliaras, G.G.4
-
11
-
-
15744388952
-
-
0163-1829,. 10.1103/PhysRevB.71.045214
-
V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, Phys. Rev. B 0163-1829 71, 045214 (2005). 10.1103/PhysRevB.71.045214
-
(2005)
Phys. Rev. B
, vol.71
, pp. 045214
-
-
Arkhipov, V.I.1
Heremans, P.2
Emelianova, E.V.3
Bässler, H.4
-
12
-
-
19544380397
-
-
0031-9007,. 10.1103/PhysRevLett.93.086802
-
D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 0031-9007 93, 086802 (2004). 10.1103/PhysRevLett.93.086802
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 086802
-
-
Lang, D.V.1
Chi, X.2
Siegrist, T.3
Sergent, A.M.4
Ramirez, A.P.5
-
13
-
-
18744394830
-
-
0031-9007,. 10.1103/PhysRevLett.93.166601
-
I. N. Hulea, H. B. Brom, A. J. Houtepen, D. Vanmaekelbergh, J. J. Kelly, and E. A. Meulenkamp, Phys. Rev. Lett. 0031-9007 93, 166601 (2004). 10.1103/PhysRevLett.93.166601
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 166601
-
-
Hulea, I.N.1
Brom, H.B.2
Houtepen, A.J.3
Vanmaekelbergh, D.4
Kelly, J.J.5
Meulenkamp, E.A.6
-
14
-
-
29144496011
-
-
0031-9007,. 10.1103/PhysRevLett.95.256405
-
O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C. K. Chan, and A. Kahn, Phys. Rev. Lett. 0031-9007 95, 256405 (2005). 10.1103/PhysRevLett.95.256405
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 256405
-
-
Tal, O.1
Rosenwaks, Y.2
Preezant, Y.3
Tessler, N.4
Chan, C.K.5
Kahn, A.6
-
15
-
-
67649571631
-
-
Thesis, University of Basel.
-
C. Vanoni, Thesis, University of Basel, 2007.
-
(2007)
-
-
Vanoni, C.1
-
16
-
-
28844477042
-
-
0031-9007,. 10.1103/PhysRevLett.95.226601
-
V. Podzorov, E. Menard, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 0031-9007 95, 226601 (2005). 10.1103/PhysRevLett.95.226601
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 226601
-
-
Podzorov, V.1
Menard, E.2
Rogers, J.A.3
Gershenson, M.E.4
-
17
-
-
1142304505
-
-
0021-8979,. 10.1063/1.1631079
-
R. W. I. de Boer, M. Jochemsen, T. M. Klapwijk, A. F. Morpurgo, J. Niemax, A. K. Tripathi, and J. Pflaum, J. Appl. Phys. 0021-8979 95, 1196 (2004). 10.1063/1.1631079
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 1196
-
-
De Boer, R.W.I.1
Jochemsen, M.2
Klapwijk, T.M.3
Morpurgo, A.F.4
Niemax, J.5
Tripathi, A.K.6
Pflaum, J.7
-
18
-
-
33645529854
-
-
0021-8979,. 10.1063/1.2169872
-
T. Minari, T. Nemoto, and S. Isoda, J. Appl. Phys. 0021-8979 99, 034506 (2006). 10.1063/1.2169872
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 034506
-
-
Minari, T.1
Nemoto, T.2
Isoda, S.3
-
19
-
-
67649568066
-
-
The ratio A was evaluated from the ratio of the deposited thickness (6 ML for the doped and 20 ML for the undoped PC nanocrystal) equal to ∼0.3 and the ratio of the effective PC channel width of ∼1 observed by SEM of actual nanojunction, see Ref..
-
The ratio A was evaluated from the ratio of the deposited thickness (6 ML for the doped and 20 ML for the undoped PC nanocrystal) equal to ∼0.3 and the ratio of the effective PC channel width of ∼1 observed by SEM of actual nanojunction, see Ref..
-
-
-
-
20
-
-
0346018589
-
-
0163-1829,. 10.1103/PhysRevB.59.7507
-
U. Wolf, V. I. Arkhipov, and H. Bässler, Phys. Rev. B 0163-1829 59, 7507 (1999). 10.1103/PhysRevB.59.7507
-
(1999)
Phys. Rev. B
, vol.59
, pp. 7507
-
-
Wolf, U.1
Arkhipov, V.I.2
Bässler, H.3
-
21
-
-
67649552162
-
-
We ascribe the difficulty to apply TLM method to undoped PC TFTs to the large non-Ohmic contact properties and its considerable influence on the short channel devices at low temperatures.
-
We ascribe the difficulty to apply TLM method to undoped PC TFTs to the large non-Ohmic contact properties and its considerable influence on the short channel devices at low temperatures.
-
-
-
-
22
-
-
29744470411
-
-
0163-1829,. 10.1103/PhysRevB.72.155206
-
R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 0163-1829 72, 155206 (2005). 10.1103/PhysRevB.72.155206
-
(2005)
Phys. Rev. B
, vol.72
, pp. 155206
-
-
Coehoorn, R.1
Pasveer, W.F.2
Bobbert, P.A.3
Michels, M.A.J.4
-
23
-
-
0000606264
-
-
0163-1829,. 10.1103/PhysRevB.57.12964
-
M. C. J. M. Vissenberg and M. Matters, Phys. Rev. B 0163-1829 57, 12964 (1998). 10.1103/PhysRevB.57.12964
-
(1998)
Phys. Rev. B
, vol.57
, pp. 12964
-
-
Vissenberg, M.C.J.M.1
Matters, M.2
-
24
-
-
67649527412
-
-
Here, pac was evaluated from the positive threshold gate voltage shift of ∼1 V of the doped-PC TFT compared to the pristine-PC TFT at room temperature. The total concentration of the F4 TCNQ molecules co-deposited in the PC film is equal to ∼4× 1019 cm-3. Therefore, the fraction of the electronically active F4 TCNQ is in the order of 10-2. Previous estimates of the doping efficiency of F4 TCNQ molecule to PC returned a value equal to ∼0.1 holes/dopant in vacuum. The lower doping efficiency by a factor of about 10 observed here, is ascribed to the brief (∼5 min) exposure of the sample to the ambient air during the transfer from the PC deposition chamber to the cryostat (see also Ref.).
-
Here, pac was evaluated from the positive threshold gate voltage shift of ∼1 V of the doped-PC TFT compared to the pristine-PC TFT at room temperature. The total concentration of the F4 TCNQ molecules co-deposited in the PC film is equal to ∼4× 1019 cm-3. Therefore, the fraction of the electronically active F4 TCNQ is in the order of 10-2. Previous estimates of the doping efficiency of F4 TCNQ molecule to PC returned a value equal to ∼0.1 holes/dopant in vacuum. The lower doping efficiency by a factor of about 10 observed here, is ascribed to the brief (∼5 min) exposure of the sample to the ambient air during the transfer from the PC deposition chamber to the cryostat (see also Ref.).
-
-
-
-
25
-
-
67649533855
-
-
The doping-induced states observed here is potentially consistent with the previously observed Vg -dependence of Rc in TFTs (Ref.); An increase of Rc upon increasing the negative Vg above 10 V can be ascribed to the resonantlike-injection from Au into the doping-induced states detuned by Vg.
-
The doping-induced states observed here is potentially consistent with the previously observed Vg -dependence of Rc in TFTs (Ref.); An increase of Rc upon increasing the negative Vg above 10 V can be ascribed to the resonantlike-injection from Au into the doping-induced states detuned by Vg.
-
-
-
|