메뉴 건너뛰기




Volumn 42, Issue 11, 2009, Pages 2460-2469

An improved box-counting method for image fractal dimension estimation

Author keywords

Box counting dimension; Fractal dimension; Fractional Brownian motion; Remote sensing image; Texture image

Indexed keywords

BOX-COUNTING; BOX-COUNTING DIMENSION; BOX-COUNTING METHOD; FRACTAL DIMENSION ESTIMATION; FRACTIONAL BROWNIAN MOTION; GRAPHIC ANALYSIS; IMAGE SURFACE; NEW MODEL; REMOTE SENSING IMAGE; REMOTE SENSING IMAGES; SHAPE CLASSIFICATION; TEXTURE IMAGE; TEXTURE SEGMENTATION;

EID: 67649407362     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.03.001     Document Type: Article
Times cited : (451)

References (22)
  • 5
    • 0031208677 scopus 로고    scopus 로고
    • Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification
    • Liu S., and Chang S. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Transactions on Image Processing 6 (1997) 1176-1184
    • (1997) IEEE Transactions on Image Processing , vol.6 , pp. 1176-1184
    • Liu, S.1    Chang, S.2
  • 7
    • 0031380907 scopus 로고    scopus 로고
    • Shape recognition using fractal dimension
    • Neil G., and Curtis K.M. Shape recognition using fractal dimension. Pattern Recognition 30 12 (1997) 1957-1969
    • (1997) Pattern Recognition , vol.30 , Issue.12 , pp. 1957-1969
    • Neil, G.1    Curtis, K.M.2
  • 11
    • 0022062872 scopus 로고
    • Fractal approach to two dimensional and three dimensional surface roughness
    • Gangepain L., and Roques-Cames C. Fractal approach to two dimensional and three dimensional surface roughness. Wear 109 (1986) 119-126
    • (1986) Wear , vol.109 , pp. 119-126
    • Gangepain, L.1    Roques-Cames, C.2
  • 12
    • 0028336445 scopus 로고
    • An efficient differential box-counting approach to compute fractal dimension of image
    • Sarker N., and Chaudhuri B.B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE Transactions on Systems, Man, and Cybernetics 24 (1994) 115-120
    • (1994) IEEE Transactions on Systems, Man, and Cybernetics , vol.24 , pp. 115-120
    • Sarker, N.1    Chaudhuri, B.B.2
  • 13
    • 0032041457 scopus 로고    scopus 로고
    • The modified box-counting method: analysis of some characteristics parameters
    • Buczkowski S., Kyriacos S., Nekka F., and Cartilier L. The modified box-counting method: analysis of some characteristics parameters. Pattern Recognition 3 (1998) 411-418
    • (1998) Pattern Recognition , vol.3 , pp. 411-418
    • Buczkowski, S.1    Kyriacos, S.2    Nekka, F.3    Cartilier, L.4
  • 14
    • 0141629387 scopus 로고    scopus 로고
    • Two algorithms to estimate fractal dimension of gray-level images
    • Chen W.-S., Yuan S.-Y., and Heieh C.-M. Two algorithms to estimate fractal dimension of gray-level images. Optical Engineering 42 (2003) 2452-2464
    • (2003) Optical Engineering , vol.42 , pp. 2452-2464
    • Chen, W.-S.1    Yuan, S.-Y.2    Heieh, C.-M.3
  • 15
    • 0036543952 scopus 로고    scopus 로고
    • Novel multifractal estimation method and its application to remote image segmentation
    • Du G., and Yeo T.S. Novel multifractal estimation method and its application to remote image segmentation. IEEE Transactions on Geoscience and Remote Sensing 40 (2002) 980-982
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , pp. 980-982
    • Du, G.1    Yeo, T.S.2
  • 16
    • 0037230856 scopus 로고    scopus 로고
    • Near optimum estimation of local fractal dimension for image segmentation
    • Novianto S., Suzuki Y., and Maeda J. Near optimum estimation of local fractal dimension for image segmentation. Pattern Recognition Letters 24 (2003) 365-374
    • (2003) Pattern Recognition Letters , vol.24 , pp. 365-374
    • Novianto, S.1    Suzuki, Y.2    Maeda, J.3
  • 17
    • 33749654044 scopus 로고    scopus 로고
    • A new approach to estimate fractal dimensions of corrosion images
    • Xu S., and Weng Y. A new approach to estimate fractal dimensions of corrosion images. Pattern Recognition Letters 27 (2006) 1942-1947
    • (2006) Pattern Recognition Letters , vol.27 , pp. 1942-1947
    • Xu, S.1    Weng, Y.2
  • 20
    • 67649404259 scopus 로고    scopus 로고
    • Fractal-based analysis of time series data and features extraction
    • Xie W., and Xie W. Fractal-based analysis of time series data and features extraction. Chinese Signal Processing Journal 13 (1997) 98-104
    • (1997) Chinese Signal Processing Journal , vol.13 , pp. 98-104
    • Xie, W.1    Xie, W.2
  • 21
    • 24044498956 scopus 로고    scopus 로고
    • Coarse iris classification using box-counting to estimate fractal dimensions
    • Yu L., Zhang D., Wang K., and Yang W. Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognition 38 (2005) 1791-1798
    • (2005) Pattern Recognition , vol.38 , pp. 1791-1798
    • Yu, L.1    Zhang, D.2    Wang, K.3    Yang, W.4
  • 22
    • 1242309785 scopus 로고    scopus 로고
    • Independent component analysis approach to image sharpening in the presence of atmospheric turbulence
    • Kopriva I., Du Q., and Szu H. Independent component analysis approach to image sharpening in the presence of atmospheric turbulence. Optics Communications 233 (2004) 7-14
    • (2004) Optics Communications , vol.233 , pp. 7-14
    • Kopriva, I.1    Du, Q.2    Szu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.