메뉴 건너뛰기




Volumn 5, Issue 6, 2009, Pages 1615-1624

Evolutionary diagonal recurrent neural network with improved hybrid EP-PSO algorithm and its identification application

Author keywords

Diagonal recurrent neural network; Evolutionary programming; Nonlinear system identification; Particle swarm optimization

Indexed keywords

CONVENTIONAL METHODS; DIAGONAL RECURRENT NEURAL NETWORK; DIAGONAL RECURRENT NEURAL NETWORKS; EVOLUTIONARY PROGRAMMING; NON-LINEAR DYNAMIC SYSTEMS; NONLINEAR SYSTEM IDENTIFICATION; PREMATURE CONVERGENCE; PSO ALGORITHMS; SECOND DERIVATIVES; TRAINING ALGORITHMS; TRAINING METHODS;

EID: 67649359749     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (23)
  • 1
    • 0029207879 scopus 로고
    • Diagonal recurrent neural networks for dynamic systems control
    • C. C. Ku and K. Y. Lee, Diagonal recurrent neural networks for dynamic systems control, IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 144-156, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.1 , pp. 144-156
    • Ku, C.C.1    Lee, K.Y.2
  • 2
    • 0030710786 scopus 로고    scopus 로고
    • Exploring the effects of Lamarckian and Baldwinian learning in evolving recurrent neural networks
    • Indianapolis, IN, USA, pp
    • W. Kim, C. K. Mak and M. W. Mak, Exploring the effects of Lamarckian and Baldwinian learning in evolving recurrent neural networks, Proc. of the IEEE International Conference on Evolutionary Computation, Indianapolis, IN, USA, pp. 617-620, 1997.
    • (1997) Proc. of the IEEE International Conference on Evolutionary Computation , pp. 617-620
    • Kim, W.1    Mak, C.K.2    Mak, M.W.3
  • 3
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • A. Blanco, M. Delgado and M. C. Pegalajar, A real-coded genetic algorithm for training recurrent neural networks, Neural Networks, vol. 14, no. 1, pp. 93-105, 2001.
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 4
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
    • C. F. Juang, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 2, pp. 997-1006, 2004.
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.34 , Issue.2 , pp. 997-1006
    • Juang, C.F.1
  • 5
    • 34548151841 scopus 로고    scopus 로고
    • Recurrent fuzzy network design using hybrid evolutionary learning algorithms
    • C. F. Juang and I. Chung, Recurrent fuzzy network design using hybrid evolutionary learning algorithms, Neurocomputing, vol. 70, no. 16-18, pp. 3301-3310, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3301-3310
    • Juang, C.F.1    Chung, I.2
  • 8
    • 0242552409 scopus 로고    scopus 로고
    • DEPSO: Hybrid particle swarm with differential evolution operator
    • Man, and Cybernetics, Washington D.C, USA, pp
    • W. J. Zhang and X. F. Xie, DEPSO: hybrid particle swarm with differential evolution operator, Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, Washington D.C, USA, pp. 3816-3821, 2003.
    • (2003) Proc. of the IEEE International Conference on Systems , pp. 3816-3821
    • Zhang, W.J.1    Xie, X.F.2
  • 9
    • 34848893948 scopus 로고    scopus 로고
    • Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
    • R. Xu, G. K. Venayagamoorthy and D. C. Wunsch II, Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization, Neural Networks, vol. 20, no. 8, pp. 917-927, 2007.
    • (2007) Neural Networks , vol.20 , Issue.8 , pp. 917-927
    • Xu, R.1    Venayagamoorthy, G.K.2    Wunsch II, D.C.3
  • 10
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural network
    • X. Yao and Y. Liu, A new evolutionary system for evolving artificial neural network, IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694-713, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 11
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Invited paper
    • X. Yao, Evolving artificial neural networks, Proc. IEEE, pp. 1423-1447, 1999 (Invited paper).
    • (1999) Proc. IEEE , pp. 1423-1447
    • Yao, X.1
  • 13
    • 34249714893 scopus 로고    scopus 로고
    • Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithms
    • X. Cai, N. Zhang, G. K. Venayagamoorthy and D. C. Wunsch II, Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithms, Neurocomputing, vol. 70, no. 15, pp. 2342-2353, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.15 , pp. 2342-2353
    • Cai, X.1    Zhang, N.2    Venayagamoorthy, G.K.3    Wunsch II, D.C.4
  • 14
    • 0031553142 scopus 로고    scopus 로고
    • Identification of nonlinear dynamic systems using higher order diagonal recurrent neural network
    • J. S. Cho, Y. W. Kim and D. J. Park, Identification of nonlinear dynamic systems using higher order diagonal recurrent neural network, Electronics Letters, vol. 33, no. 25, pp. 2133-2135, 1997.
    • (1997) Electronics Letters , vol.33 , Issue.25 , pp. 2133-2135
    • Cho, J.S.1    Kim, Y.W.2    Park, D.J.3
  • 15
    • 3743144907 scopus 로고    scopus 로고
    • Fast nonlinear channel equalisation using generalized diagonal recurrent neural networks
    • Y. W. Kim and D. J. Park, Fast nonlinear channel equalisation using generalized diagonal recurrent neural networks, Electronics Letters, vol. 34, no. 23, pp. 2253-2255, 1998.
    • (1998) Electronics Letters , vol.34 , Issue.23 , pp. 2253-2255
    • Kim, Y.W.1    Park, D.J.2
  • 17
    • 37349013716 scopus 로고    scopus 로고
    • Study on a quasi-diagonal recurrent neural network and its algorithm
    • H. R. Li, J. H. Wang, S. S. Gu, Study on a quasi-diagonal recurrent neural network and its algorithm, Journal of System Simulation, vol. 16, no. 7, pp. 1542-1544, 2004.
    • (2004) Journal of System Simulation , vol.16 , Issue.7 , pp. 1542-1544
    • Li, H.R.1    Wang, J.H.2    Gu, S.S.3
  • 20
    • 0034863568 scopus 로고    scopus 로고
    • Particle swarm optimization: Developmental, applications and resources
    • Seoul, Korea, pp
    • R. Eberhart and Y. Shi, Particle swarm optimization: Developmental, applications and resources, Proc. of the 2001 Congress on Evolutionary Computation, Seoul, Korea, pp. 81-86, 2001.
    • (2001) Proc. of the 2001 Congress on Evolutionary Computation , pp. 81-86
    • Eberhart, R.1    Shi, Y.2
  • 23
    • 63649137867 scopus 로고    scopus 로고
    • X. J. Cai, Z. H. Cui, J. C. Zeng and Y. Tan, Performance-dependent adaptive particle swarm optimization, International Journal of Innovative Computing, Information and Control, 3, no. 6(B), pp. 1697-1706, 2007.
    • X. J. Cai, Z. H. Cui, J. C. Zeng and Y. Tan, Performance-dependent adaptive particle swarm optimization, International Journal of Innovative Computing, Information and Control, vol. 3, no. 6(B), pp. 1697-1706, 2007.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.