메뉴 건너뛰기




Volumn 24, Issue 5, 2009, Pages 504-528

Clustering in Ordered Dissimilarity Data

Author keywords

[No Author keywords available]

Indexed keywords

MATRIX; NUMERICAL EXAMPLE; OBJECTIVE FUNCTIONS; RELATIONAL DATA; VISUAL ASSESSMENT OF CLUSTER TENDENCY;

EID: 67649289957     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.20344     Document Type: Article
Times cited : (32)

References (43)
  • 8
    • 0036082940 scopus 로고    scopus 로고
    • VAT: A tool for visual assessment of (cluster) tendency
    • Piscataway, NJ
    • Bezdek J, Hathaway R. VAT: A tool for visual assessment of (cluster) tendency. In: Proc. IJCNN 2002, Piscataway, NJ, 2002. pp 2225-2230.
    • (2002) Proc. IJCNN , pp. 2225-2230
    • Bezdek, J.1    Hathaway, R.2
  • 9
    • 84911584312 scopus 로고
    • Shortest connection networks and some generalisations
    • Prim R. Shortest connection networks and some generalisations. Bell System Tech J 1957;36:1389-1401.
    • (1957) Bell System Tech J , vol.36 , pp. 1389-1401
    • Prim, R.1
  • 10
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 2002;6(1):58-73.
    • (2002) IEEE Trans Evolut Comput , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 11
    • 0000974551 scopus 로고
    • Plots of high dimensional data
    • Andrews D. Plots of high dimensional data. Biometrics 1972;28:125-136.
    • (1972) Biometrics , vol.28 , pp. 125-136
    • Andrews, D.1
  • 12
    • 84949331034 scopus 로고
    • The use of faces to represent points in k-dimensional space
    • Chernoff H. The use of faces to represent points in k-dimensional space. J Am Stat Assoc 1973;68:361-368.
    • (1973) J Am Stat Assoc , vol.68 , pp. 361-368
    • Chernoff, H.1
  • 13
    • 0001153689 scopus 로고
    • Representing points in many dimensions by trees and castles
    • Kleiner B, Hartigan J. Representing points in many dimensions by trees and castles. J Am StatAsooc 1981;76:260-269.
    • (1981) J Am StatAsooc , vol.76 , pp. 260-269
    • Kleiner, B.1    Hartigan, J.2
  • 14
    • 0004185855 scopus 로고
    • Ann Arbor, MI: Edwards Bros
    • Tryon R. Cluster analysis. Ann Arbor, MI: Edwards Bros.; 1939.
    • (1939) Cluster analysis
    • Tryon, R.1
  • 17
    • 67649281537 scopus 로고    scopus 로고
    • Cleveland W. Visualizing data. Summit, NJ: Hobart Press; 1993.
    • Cleveland W. Visualizing data. Summit, NJ: Hobart Press; 1993.
  • 18
    • 9444222978 scopus 로고
    • A computer approach to numerical taxonomy
    • Sneath P. A computer approach to numerical taxonomy. J Gen Microbiol 1957;17:201-226.
    • (1957) J Gen Microbiol , vol.17 , pp. 201-226
    • Sneath, P.1
  • 19
    • 0042143238 scopus 로고
    • The Adansonian taxonomy of some yellow pigmented marine bacteria
    • Floodgate G, Hayes P. The Adansonian taxonomy of some yellow pigmented marine bacteria. J Gen Microbiol 1963;30:237-244.
    • (1963) J Gen Microbiol , vol.30 , pp. 237-244
    • Floodgate, G.1    Hayes, P.2
  • 20
    • 84976658532 scopus 로고
    • A computer generated aid for cluster analysis
    • Ling R. A computer generated aid for cluster analysis. CACM 1973;16(6):355-361.
    • (1973) CACM , vol.16 , Issue.6 , pp. 355-361
    • Ling, R.1
  • 23
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • Girolami M. Mercer kernel-based clustering in feature space. IEEE Trans Neural Networks 2002;13:780-784.
    • (2002) IEEE Trans Neural Networks , vol.13 , pp. 780-784
    • Girolami, M.1
  • 24
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernel-based fuzzy c-means algorithm
    • Zhang D, Chen S. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Process Lett 2003;18:155-162.
    • (2003) Neural Process Lett , vol.18 , pp. 155-162
    • Zhang, D.1    Chen, S.2
  • 25
    • 0035719912 scopus 로고    scopus 로고
    • Ranking fMRI time courses by minimum spanning trees: Assessing coactivation in fMRI
    • Baumgartner R, Somorjai R, Summers R, Richter W. Ranking fMRI time courses by minimum spanning trees: Assessing coactivation in fMRI. Neurolmage 2001;13:734-742.
    • (2001) Neurolmage , vol.13 , pp. 734-742
    • Baumgartner, R.1    Somorjai, R.2    Summers, R.3    Richter, W.4
  • 26
    • 0033874310 scopus 로고    scopus 로고
    • Correlator beware: Correlation has limited selectivity for fMRI data analysis
    • Baumgartner R, Somorjai R, Summers R, Richter W, Ryner L. Correlator beware: correlation has limited selectivity for fMRI data analysis. Neurolmage 2000;12:240-243.
    • (2000) Neurolmage , vol.12 , pp. 240-243
    • Baumgartner, R.1    Somorjai, R.2    Summers, R.3    Richter, W.4    Ryner, L.5
  • 27
    • 84947579437 scopus 로고    scopus 로고
    • A scalable approach to balanced, high-dimensional clustering of market- baskets
    • LNCS New York: Springer;
    • Strehl A, Ghosh J. A scalable approach to balanced, high-dimensional clustering of market- baskets. In: Proc HiPC. LNCS vol 1970, New York: Springer; 2000. pp 525-536.
    • (2000) Proc HiPC , vol.1970 , pp. 525-536
    • Strehl, A.1    Ghosh, J.2
  • 28
    • 0033715654 scopus 로고    scopus 로고
    • Value-based customer grouping from large retail data-sets
    • Bellingham, WA: SPIE Press;
    • Strehl A, Ghosh J. Value-based customer grouping from large retail data-sets. In: Proc SPIE Conf on Data Mining and Knowledge Discovery, vol. 4057, Bellingham, WA: SPIE Press; 2000. pp 33-42.
    • (2000) Proc SPIE Conf on Data Mining and Knowledge Discovery , vol.4057 , pp. 33-42
    • Strehl, A.1    Ghosh, J.2
  • 29
    • 67649247984 scopus 로고    scopus 로고
    • Dhillon I, Modha D, Spangler W. Visualizing class structure of multidimensional data. In Proc 30th Symp on the Interface, Computing Science, and Statistics, Weisberg S, editor, 1998.
    • Dhillon I, Modha D, Spangler W. Visualizing class structure of multidimensional data. In Proc 30th Symp on the Interface, Computing Science, and Statistics, Weisberg S, editor, 1998.
  • 30
    • 0037410621 scopus 로고    scopus 로고
    • Visual cluster validity for prototype generator clustering models
    • Hathaway R, Bezdek J. Visual cluster validity for prototype generator clustering models. Pattern Recog Lett 2003;24:1563-1569.
    • (2003) Pattern Recog Lett , vol.24 , pp. 1563-1569
    • Hathaway, R.1    Bezdek, J.2
  • 32
    • 33646111187 scopus 로고    scopus 로고
    • Scalable visual asseessment of cluster tendency for large data sets
    • Hathaway R, Bezdek J, Huband J. Scalable visual asseessment of cluster tendency for large data sets. Pattern Recog 2006;39(7):1315-1324.
    • (2006) Pattern Recog , vol.39 , Issue.7 , pp. 1315-1324
    • Hathaway, R.1    Bezdek, J.2    Huband, J.3
  • 33
    • 35348896605 scopus 로고    scopus 로고
    • Visual assessment of clustering tendency for rectangular dissimilarity matrices
    • Bezdek J, Hathaway R, Huband J. Visual assessment of clustering tendency for rectangular dissimilarity matrices. IEEE Trans Fuzzy Syst 2007;15(5):890-903.
    • (2007) IEEE Trans Fuzzy Syst , vol.15 , Issue.5 , pp. 890-903
    • Bezdek, J.1    Hathaway, R.2    Huband, J.3
  • 35
    • 77957952788 scopus 로고    scopus 로고
    • Dunns cluster validity index as a contrast measure of VAT image
    • Tampa, FL
    • Havens T, Bezdek J, Keller J, Popescu M. Dunns cluster validity index as a contrast measure of VAT image. In: Proc ICPR, Tampa, FL, 2008.
    • (2008) Proc ICPR
    • Havens, T.1    Bezdek, J.2    Keller, J.3    Popescu, M.4
  • 36
    • 58149122595 scopus 로고    scopus 로고
    • Sledge I, Huband J, Bezdek J. (Automatic) Cluster count extraction from unlabeled datasets. In: Proc ICNC/FSKD, Jinan Shandong, China, 2008. pp 3-13.
    • Sledge I, Huband J, Bezdek J. (Automatic) Cluster count extraction from unlabeled datasets. In: Proc ICNC/FSKD, Jinan Shandong, China, 2008. pp 3-13.
  • 37
    • 67649260243 scopus 로고    scopus 로고
    • Automatically determining the number of clusters from unlabeled data sets
    • Wang L, Leckie C, Rao K, Bezdek J. Automatically determining the number of clusters from unlabeled data sets. IEEE Trans Knowl Eng 2009;21(3):335-350.
    • (2009) IEEE Trans Knowl Eng , vol.21 , Issue.3 , pp. 335-350
    • Wang, L.1    Leckie, C.2    Rao, K.3    Bezdek, J.4
  • 39
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well- separated clusters
    • Dunn J. A fuzzy relative of the ISODATA process and its use in detecting compact well- separated clusters. J Cybernet 1974;3(3):32-57.
    • (1974) J Cybernet , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.1
  • 41
    • 0346801873 scopus 로고    scopus 로고
    • The gene ontology (GO) database and informatics resource
    • The Gene Ontology Consortium
    • The Gene Ontology Consortium. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-D261.
    • (2004) Nucleic Acids Res , vol.32
  • 42
    • 28844440848 scopus 로고    scopus 로고
    • Functional summarization of gene product clusters using Gene Ontology similarity measures
    • Piscataway, NJ: IEEE Press
    • Popescu M, Keller J, Mitchell J, Bezdek J. Functional summarization of gene product clusters using Gene Ontology similarity measures. In: Proc 2004 ISSNIP. Piscataway, NJ: IEEE Press, 2004. pp 553-559.
    • (2004) Proc 2004 ISSNIP , pp. 553-559
    • Popescu, M.1    Keller, J.2    Mitchell, J.3    Bezdek, J.4
  • 43
    • 0347418197 scopus 로고    scopus 로고
    • Collagens, modifying enzymes, and their mutation in humans, flies, and worms
    • Myllyharju J, Kivirikko K. Collagens, modifying enzymes, and their mutation in humans, flies, and worms. Trends Genet 2004;20(1):33-43.
    • (2004) Trends Genet , vol.20 , Issue.1 , pp. 33-43
    • Myllyharju, J.1    Kivirikko, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.