-
2
-
-
55249117458
-
-
10.1038/nature07332
-
J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, Nature (London) 455, 1216 (2008). 10.1038/nature07332
-
(2008)
Nature (London)
, vol.455
, pp. 1216
-
-
Esteve, J.1
Gross, C.2
Weller, A.3
Giovanazzi, S.4
Oberthaler, M.K.5
-
3
-
-
33745616370
-
-
10.1038/nature04851
-
Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard, Nature (London) 441, 1118 (2006). 10.1038/nature04851
-
(2006)
Nature (London)
, vol.441
, pp. 1118
-
-
Hadzibabic, Z.1
Krüger, P.2
Cheneau, M.3
Battelier, B.4
Dalibard, J.5
-
4
-
-
0037011956
-
-
10.1038/415039a
-
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature (London) 415, 39 (2002). 10.1038/415039a
-
(2002)
Nature (London)
, vol.415
, pp. 39
-
-
Greiner, M.1
Mandel, O.2
Esslinger, T.3
Hänsch, T.W.4
Bloch, I.5
-
5
-
-
0032569802
-
-
10.1038/24567
-
J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle, Nature (London) 396, 345 (1998). 10.1038/24567
-
(1998)
Nature (London)
, vol.396
, pp. 345
-
-
Stenger, J.1
Inouye, S.2
Stamper-Kurn, D.M.3
Miesner, H.-J.4
Chikkatur, A.P.5
Ketterle, W.6
-
6
-
-
0037198624
-
-
10.1038/417529a
-
E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Nature (London) 417, 529 (2002). 10.1038/417529a
-
(2002)
Nature (London)
, vol.417
, pp. 529
-
-
Donley, E.A.1
Claussen, N.R.2
Thompson, S.T.3
Wieman, C.E.4
-
7
-
-
0042029577
-
-
10.1103/PhysRevLett.91.020402
-
T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhaes, S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, Phys. Rev. Lett. 91, 020402 (2003). 10.1103/PhysRevLett.91.020402
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 020402
-
-
Bourdel, T.1
Cubizolles, J.2
Khaykovich, L.3
Magalhaes, K.M.F.4
Kokkelmans, S.J.J.M.F.5
Shlyapnikov, G.V.6
Salomon, C.7
-
8
-
-
0038681024
-
-
10.1038/nature01738
-
C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature (London) 424, 47 (2003). 10.1038/nature01738
-
(2003)
Nature (London)
, vol.424
, pp. 47
-
-
Regal, C.A.1
Ticknor, C.2
Bohn, J.L.3
Jin, D.S.4
-
9
-
-
0037428128
-
-
10.1126/science.1079699
-
T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Science 299, 232 (2003). 10.1126/science.1079699
-
(2003)
Science
, vol.299
, pp. 232
-
-
Weber, T.1
Herbig, J.2
Mark, M.3
Nägerl, H.-C.4
Grimm, R.5
-
10
-
-
4444360622
-
-
10.1103/PhysRevLett.91.040404
-
Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003). 10.1103/PhysRevLett.91.040404
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 040404
-
-
Takasu, Y.1
Maki, K.2
Komori, K.3
Takano, T.4
Honda, K.5
Kumakura, M.6
Yabuzaki, T.7
Takahashi, Y.8
-
12
-
-
0037171208
-
-
10.1103/PhysRevLett.88.120405
-
S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas, Phys. Rev. Lett. 88, 120405 (2002). 10.1103/PhysRevLett.88.120405
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 120405
-
-
Granade, S.R.1
Gehm, M.E.2
O'Hara, K.M.3
Thomas, J.E.4
-
14
-
-
67649209179
-
-
Ph.D. thesis, Georgia Institute of Technology
-
Ming-Shien Chang, Ph.D. thesis, Georgia Institute of Technology, 2006 (http://www.physics.gatech.edu/ultracool/Papers).
-
(2006)
-
-
Chang, M.1
-
15
-
-
4243946339
-
-
10.1103/PhysRevA.64.051403
-
K. M. O'Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, Phys. Rev. A 64, 051403 (R) (2001). 10.1103/PhysRevA.64.051403
-
(2001)
Phys. Rev. A
, vol.64
, pp. 051403
-
-
O'Hara, K.M.1
Gehm, M.E.2
Granade, S.R.3
Thomas, J.E.4
-
16
-
-
48049095719
-
-
10.1103/PhysRevA.78.011604
-
C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Phys. Rev. A 78, 011604 (R) (2008). 10.1103/PhysRevA.78.011604
-
(2008)
Phys. Rev. A
, vol.78
, pp. 011604
-
-
Hung, C.-L.1
Zhang, X.2
Gemelke, N.3
Chin, C.4
-
17
-
-
53349146291
-
-
10.1103/PhysRevA.78.031401
-
J. P. Brantut, J. F. Clément, M. Robert-de-Saint-Vincent, G. Varoquaux, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Phys. Rev. A 78, 031401 (R) (2008). 10.1103/PhysRevA.78.031401
-
(2008)
Phys. Rev. A
, vol.78
, pp. 031401
-
-
Brantut, J.P.1
Clément, J.F.2
Robert-De-Saint-Vincent, M.3
Varoquaux, G.4
Nyman, R.A.5
Aspect, A.6
Bourdel, T.7
Bouyer, P.8
-
18
-
-
84975659947
-
-
W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, J. Opt. Soc. Am. 11, 1332 (1994).
-
(1994)
J. Opt. Soc. Am.
, vol.11
, pp. 1332
-
-
Petrich, W.1
Anderson, M.H.2
Ensher, J.R.3
Cornell, E.A.4
-
19
-
-
12044254134
-
-
10.1103/PhysRevLett.70.2253
-
W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, Phys. Rev. Lett. 70, 2253 (1993). 10.1103/PhysRevLett.70.2253
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2253
-
-
Ketterle, W.1
Davis, K.B.2
Joffe, M.A.3
Martin, A.4
Pritchard, D.E.5
-
20
-
-
70350249545
-
-
10.1209/0295-5075/83/50001
-
A. Couvert, M. Jeppesen, T. Kawalec, G. Reinaudi, R. Mathevet, and D. Guery-Odelin, Europhys. Lett. 83, 50001 (2008). 10.1209/0295-5075/83/50001
-
(2008)
Europhys. Lett.
, vol.83
, pp. 50001
-
-
Couvert, A.1
Jeppesen, M.2
Kawalec, T.3
Reinaudi, G.4
Mathevet, R.5
Guery-Odelin, D.6
-
21
-
-
67649225711
-
-
Actually the tightly confining beam is already on with ∼0.7 W during the very far-detuned molasses phase. Such a power corresponds to a light shift similar to that created by the wide beam and the additional trapping volume permits a gain of ∼10% in the atom number.
-
Actually the tightly confining beam is already on with ∼0.7 W during the very far-detuned molasses phase. Such a power corresponds to a light shift similar to that created by the wide beam and the additional trapping volume permits a gain of ∼10% in the atom number.
-
-
-
-
22
-
-
67649240658
-
-
An experimental proof of the role of three-body collisions is the fact that using more power (14 W rather than 6 W) in the confining beam leads to a lower atom number.
-
An experimental proof of the role of three-body collisions is the fact that using more power (14 W rather than 6 W) in the confining beam leads to a lower atom number.
-
-
-
-
24
-
-
0000949311
-
-
W. Ketterle and N. J. van Druten, Adv. At., Mol., Opt. Phys. 37, 181 (1996).
-
(1996)
Adv. At., Mol., Opt. Phys.
, vol.37
, pp. 181
-
-
Ketterle, W.1
Van Druten, N.J.2
-
25
-
-
67649183798
-
-
For background losses, the formula is γ=η-4-R (η-3). The difference comes from the fact that three-body losses mostly affect the atoms at the trap center where the density is higher.
-
For background losses, the formula is γ=η-4-R (η-3). The difference comes from the fact that three-body losses mostly affect the atoms at the trap center where the density is higher.
-
-
-
-
26
-
-
67649217451
-
-
To further simplify the degenerated gas apparatus, all the laser beams for trapping and for cooling could be generated from a single 1560 nm fibered diode after amplification and frequency doubling.
-
To further simplify the degenerated gas apparatus, all the laser beams for trapping and for cooling could be generated from a single 1560 nm fibered diode after amplification and frequency doubling.
-
-
-
-
27
-
-
33748479682
-
-
10.1007/s00340-006-2363-2
-
Y. Le Coq, J. A. Retter, S. Richard, A. Aspect, and P. Bouyer, Appl. Phys. B: Lasers Opt. 84, 627 (2006). 10.1007/s00340-006-2363-2
-
(2006)
Appl. Phys. B: Lasers Opt.
, vol.84
, pp. 627
-
-
Le Coq, Y.1
Retter, J.A.2
Richard, S.3
Aspect, A.4
Bouyer, P.5
-
28
-
-
2942746404
-
-
R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, Opt. Express 11, 1709 (2003).
-
(2003)
Opt. Express
, vol.11
, pp. 1709
-
-
Thompson, R.1
Tu, M.2
Aveline, D.3
Lundblad, N.4
Maleki, L.5
|