-
7
-
-
67649156528
-
-
Liu, C.; He, J.; Keunings, R.; Bailly, C. Macromolecules 2006, 39, 2093.
-
(2006)
Macromolecules
, vol.39
, pp. 2093
-
-
Liu, C.1
He, J.2
Keunings, R.3
Bailly, C.4
-
8
-
-
21244484648
-
-
Kremer, K.; Sukumaran, S. K.; Everaers, R.; Grest, G. S. Comput. Phys. Commun. 2005, 169, 75.
-
(2005)
Comput. Phys. Commun
, vol.169
, pp. 75
-
-
Kremer, K.1
Sukumaran, S.K.2
Everaers, R.3
Grest, G.S.4
-
9
-
-
0037017257
-
-
Wischnewski, A.; Monkenbusch, M.; Willner, L.; Richter, D.; Likhtman, A. E.; McLeish, T. C. B.; Farago, B. Phys. Rev. Lett. 2002, 88, 058301.
-
(2002)
Phys. Rev. Lett
, vol.88
, pp. 058301
-
-
Wischnewski, A.1
Monkenbusch, M.2
Willner, L.3
Richter, D.4
Likhtman, A.E.5
McLeish, T.C.B.6
Farago, B.7
-
10
-
-
0343541391
-
-
Kirste, R. G.; Kruse, W. A.; Ibel, K. Polymer 1975, 16, 120.
-
(1975)
Polymer
, vol.16
, pp. 120
-
-
Kirste, R.G.1
Kruse, W.A.2
Ibel, K.3
-
11
-
-
67649150230
-
-
33
-
33
-
-
-
-
12
-
-
67649153445
-
-
Likhtman, A. E.; Sukumaran, S. K.; Ramirez, J. Macromolecules 2007, 40, 1607.
-
(2007)
Macromolecules
, vol.40
, pp. 1607
-
-
Likhtman, A.E.1
Sukumaran, S.K.2
Ramirez, J.3
-
13
-
-
0037465024
-
-
Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N.; Kroger, M.; Ramirez, J.; Ottinger, H. C.; Vlassopoulous, D. Macromolecules 2003, 36, 1376.
-
(2003)
Macromolecules
, vol.36
, pp. 1376
-
-
Harmandaris, V.A.1
Mavrantzas, V.G.2
Theodorou, D.N.3
Kroger, M.4
Ramirez, J.5
Ottinger, H.C.6
Vlassopoulous, D.7
-
15
-
-
25844517938
-
-
Leon, S.; van der Vegt, N. F. A.; Delle Site, L.; Kremer, K. Macromolecules 2005, 38, 8078.
-
(2005)
Macromolecules
, vol.38
, pp. 8078
-
-
Leon, S.1
van der Vegt, N.F.A.2
Delle Site, L.3
Kremer, K.4
-
16
-
-
33749672504
-
-
Harmandaris, V. A.; Adhikari, N. P.; van der Vegt, N. F. A.; Kremer, K. Macromolecules 2006, 39, 6708.
-
(2006)
Macromolecules
, vol.39
, pp. 6708
-
-
Harmandaris, V.A.1
Adhikari, N.P.2
van der Vegt, N.F.A.3
Kremer, K.4
-
19
-
-
34547180858
-
-
Ramirez, J.; Sukumaran, S. K.; Likhtman, A. E. Macromol. Symo. 2007, 252, 119.
-
(2007)
Macromol. Symo
, vol.252
, pp. 119
-
-
Ramirez, J.1
Sukumaran, S.K.2
Likhtman, A.E.3
-
20
-
-
67649153444
-
-
Private communication
-
Ramirez, J. Private communication.
-
-
-
Ramirez, J.1
-
21
-
-
0842330642
-
-
Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J. J. Chem. Phys. 2003, 119, 12718.
-
(2003)
J. Chem. Phys
, vol.119
, pp. 12718
-
-
Auhl, R.1
Everaers, R.2
Grest, G.S.3
Kremer, K.4
Plimpton, S.J.5
-
23
-
-
34547299705
-
-
Ramirez, J.; Sukumaran, S. K.; Likhtman, A. E. J. Chem. Phys. 2007, 126, 244904.
-
(2007)
J. Chem. Phys
, vol.126
, pp. 244904
-
-
Ramirez, J.1
Sukumaran, S.K.2
Likhtman, A.E.3
-
25
-
-
0034635651
-
-
Putz, M.; Kremer, K.; Grest, G. S. Europhys. Lett. 2000, 49, 735.
-
(2000)
Europhys. Lett
, vol.49
, pp. 735
-
-
Putz, M.1
Kremer, K.2
Grest, G.S.3
-
26
-
-
67649175888
-
-
12 it is not necessary to add data to the G(t) correlator at every time step in the slip-spring model. This would result in a further speed-up of the slip-spring model than that quoted in the main text.
-
12 it is not necessary to add data to the G(t) correlator at every time step in the slip-spring model. This would result in a further speed-up of the slip-spring model than that quoted in the main text.
-
-
-
-
27
-
-
67649193701
-
-
One might wonder why the MD simulations were not performed with 10 chains or the slip-spring simulations with 70 chains for easier comparison. This is due to two reasons. The size of the box used in the MD simulation of a polymer melt must be sufficiently large to ensure that parts of the chain that should not interact with each other actually do not do so; i.e, one should beware of the periodic image in a neighboring box. As the box size is related to the number of chains in the MD box through the density of the system, the number of chains cannot be arbitrarily reduced. We can indeed perform the slip-spring simulations with 70 chains but this is unnecessary to obtain good statistics and therefore a waste of computing resources. Data of excellent quality can be obtained using just 10 chains and hence the comparison used provides a fairer measure of the actual speed-up obtained
-
One might wonder why the MD simulations were not performed with 10 chains or the slip-spring simulations with 70 chains for easier comparison. This is due to two reasons. The size of the box used in the MD simulation of a polymer melt must be sufficiently large to ensure that parts of the chain that should not interact with each other actually do not do so; i.e., one should beware of the periodic image in a neighboring box. As the box size is related to the number of chains in the MD box through the density of the system, the number of chains cannot be arbitrarily reduced. We can indeed perform the slip-spring simulations with 70 chains but this is unnecessary to obtain good statistics and therefore a waste of computing resources. Data of excellent quality can be obtained using just 10 chains and hence the comparison used provides a fairer measure of the actual speed-up obtained.
-
-
-
-
28
-
-
17444415942
-
-
Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Obhukov, A. J.S.; Mattioni, L.; Muller, M.; Semenov, A. Phys. Rev. Lett. 2004, 93, 147801.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 147801
-
-
Wittmer, J.P.1
Meyer, H.2
Baschnagel, J.3
Obhukov, A.J.S.4
Mattioni, L.5
Muller, M.6
Semenov, A.7
-
32
-
-
13444267960
-
-
Sen, S.; Kumar, S. K.; Keblinski, P. Macromolecules 2005, 38, 650.
-
(2005)
Macromolecules
, vol.38
, pp. 650
-
-
Sen, S.1
Kumar, S.K.2
Keblinski, P.3
-
33
-
-
43049136255
-
-
Auhl, D.; Ramirez, J.; Likhtman, A. E.; Chambon, P.; Fernyhough, C. J. Rheol. 2008, 52, 801.
-
(2008)
J. Rheol
, vol.52
, pp. 801
-
-
Auhl, D.1
Ramirez, J.2
Likhtman, A.E.3
Chambon, P.4
Fernyhough, C.5
|