메뉴 건너뛰기




Volumn 26, Issue 2, 2009, Pages 145-175

Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments

Author keywords

[No Author keywords available]

Indexed keywords

AUTONOMOUS NAVIGATION; AUTONOMOUS ROBOT NAVIGATION; AVOIDING OBSTACLE; CLASSIFIER ENSEMBLES; EFFECTIVE TOOL; ENSEMBLE ALGORITHMS; ENSEMBLE METHODS; EXPERIMENTAL EVALUATION; FAR-FIELD; LABELED DATA; LEARNING APPROACH; MACHINE LEARNING METHODS; NAVIGATION TASKS; NEAR FIELDS; NEAR-FIELD; OUTDOOR ENVIRONMENT; PARAMETER SELECTION; PROBLEM DOMAIN; TERRAIN CLASSIFICATION; TERRAIN MODEL; TRAIN MODEL; UNSTRUCTURED ENVIRONMENTS;

EID: 67649209190     PISSN: 15564959     EISSN: 15564967     Source Type: Journal    
DOI: 10.1002/rob.20279     Document Type: Article
Times cited : (68)

References (70)
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2), 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 33846516584 scopus 로고    scopus 로고
    • information science and statistics, Secaucus, NJ: Springer-Verlag New York
    • Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). Secaucus, NJ: Springer-Verlag New York.
    • (2006) Pattern recognition and machine learning
    • Bishop, C.M.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0023577236 scopus 로고
    • An obstacle avoidance algorithm for an autonomous land vehicle
    • Boston, MA pp, Boston, MA: SPIE
    • Chang, T. S., Qui, K., & Nitao, J. J. (1986). An obstacle avoidance algorithm for an autonomous land vehicle. In Proceedings of the SPIE Conference on Mobile Robots, Boston, MA (pp. 117-123). Boston, MA: SPIE.
    • (1986) Proceedings of the SPIE Conference on Mobile Robots , pp. 117-123
    • Chang, T.S.1    Qui, K.2    Nitao, J.J.3
  • 18
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2, 263-286.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 19
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3), 255-273.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 22
    • 84959269196 scopus 로고    scopus 로고
    • Outdoor path labeling using polynomial Mahalanobis distance
    • Philadelphia, PA. Cambridge, MA: MIT Press
    • Grudic, G., & Mulligan, J. (2006). Outdoor path labeling using polynomial Mahalanobis distance. In Proceedings of Robotics: Science and Systems, Philadelphia, PA. Cambridge, MA: MIT Press.
    • (2006) Proceedings of Robotics: Science and Systems
    • Grudic, G.1    Mulligan, J.2
  • 25
    • 67649167464 scopus 로고    scopus 로고
    • Enhancing supervised terrain classification with predictive unsupervised learning
    • Philadelphia, PA. Cambridge, MA: MIT Press
    • Happold, M., Ollis, M., & Johnson, N. (2006). Enhancing supervised terrain classification with predictive unsupervised learning. In Proceedings of Robotics: Science and Systems, Philadelphia, PA. Cambridge, MA: MIT Press.
    • (2006) Proceedings of Robotics: Science and Systems
    • Happold, M.1    Ollis, M.2    Johnson, N.3
  • 26
    • 0001259111 scopus 로고    scopus 로고
    • Bayesian model averaging: A tutorial (with discussion)
    • Hoeting, J., Madigan, D., Raftery, A., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial (with discussion). Statistical Science, 14(4), 382-417.
    • (1999) Statistical Science , vol.14 , Issue.4 , pp. 382-417
    • Hoeting, J.1    Madigan, D.2    Raftery, A.3    Volinsky, C.T.4
  • 29
    • 0029372769 scopus 로고
    • Methods for combining experts' probability assessments
    • Jacobs, R. A. (1995). Methods for combining experts' probability assessments. Neural Computation, 7(5), 867-888.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 867-888
    • Jacobs, R.A.1
  • 33
    • 0002351051 scopus 로고    scopus 로고
    • An analysis of requirements for rough terrain autonomous mobility
    • Kelly, A., & Stentz, A. T. (1997). An analysis of requirements for rough terrain autonomous mobility. Autonomous Robots, 4(4).
    • (1997) Autonomous Robots , vol.4 , Issue.4
    • Kelly, A.1    Stentz, A.T.2
  • 41
    • 74549129195 scopus 로고    scopus 로고
    • Adaptive road following using self-supervised learning and reverse optical flow
    • Cambridge, MA. Cambridge, MA: MIT Press
    • Lieb, D., Lookingbill, A., & Thrun, S. (2005). Adaptive road following using self-supervised learning and reverse optical flow. In Proceedings of Robotics: Science and Systems, Cambridge, MA. Cambridge, MA: MIT Press.
    • (2005) Proceedings of Robotics: Science and Systems
    • Lieb, D.1    Lookingbill, A.2    Thrun, S.3
  • 42
    • 44649088319 scopus 로고    scopus 로고
    • Trust region Newton method for large-scale logistic regression
    • Software available at
    • Lin, C.-J., Weng, R. C., & Keerthi, S. S. (2008). Trust region Newton method for large-scale logistic regression. Journal of Machine Learning Research, 9, 627-650. Software available at http://www.csie.ntu.edu.tw/ ~cjlin/liblinear.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 627-650
    • Lin, C.-J.1    Weng, R.C.2    Keerthi, S.S.3
  • 45
    • 9144265616 scopus 로고    scopus 로고
    • Obstacle detection and terrain classification for autonomous off-road navigation
    • Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots, 18(1), 81-102.
    • (2005) Autonomous Robots , vol.18 , Issue.1 , pp. 81-102
    • Manduchi, R.1    Castano, A.2    Talukder, A.3    Matthies, L.4
  • 48
    • 26444530040 scopus 로고    scopus 로고
    • ACE: Adaptive classifiers-ensemble system for concept-drifting environments
    • CA pp, Berlin: Springer
    • Nishida, K., Yamauchi, K., & Omori, T. (2005). ACE: Adaptive classifiers-ensemble system for concept-drifting environments. In Multiple Classifier Systems (MCS '05), Seaside, CA (pp. 176-185). Berlin: Springer.
    • (2005) Multiple Classifier Systems (MCS '05), Seaside , pp. 176-185
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3
  • 50
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Cambridge, MA: MIT Press
    • Platt, J. (2000). Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in large margin classifiers (pp. 61-74). Cambridge, MA: MIT Press.
    • (2000) Advances in large margin classifiers , pp. 61-74
    • Platt, J.1
  • 51
    • 0000796434 scopus 로고
    • ALVINN: An autonomous land vehicle in a neural network
    • San Francisco, CA: Morgan Kaufmann
    • Pomerleau, D. (1989). ALVINN: An autonomous land vehicle in a neural network. In Advances in neural information processing systems 1. San Francisco, CA: Morgan Kaufmann.
    • (1989) Advances in neural information processing systems , vol.1
    • Pomerleau, D.1
  • 58
    • 67649175218 scopus 로고    scopus 로고
    • A perception mechanism for supporting autonomous intersection handling in urban driving
    • Nice, France pp, IEEE
    • Seo, Y.-W., & Urmson, C. (2008). A perception mechanism for supporting autonomous intersection handling in urban driving. In Proceedings of IEEE International Conference Intelligent Robots and Systems, Nice, France (pp. 1830-1835). IEEE.
    • (2008) Proceedings of IEEE International Conference Intelligent Robots and Systems , pp. 1830-1835
    • Seo, Y.-W.1    Urmson, C.2
  • 64
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift
    • TCD-CS-2004-15, Dublin, Ireland: Computer Science Department, Trinity College
    • Tsymbal, A. (2004). The problem of concept drift: definitions and related work (Tech. Rep. TCD-CS-2004-15). Dublin, Ireland: Computer Science Department, Trinity College.
    • (2004) definitions and related work (Tech. Rep
    • Tsymbal, A.1
  • 69
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1), 69-101.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 70
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.