메뉴 건너뛰기




Volumn 1, Issue , 2003, Pages 216-219

A review of some main models for traffic flow forecasting

Author keywords

ARIMA model; Neural network model; Nonparametric model; Traffic flow; Traffic forecasting

Indexed keywords

FORECASTING; INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; REAL TIME SYSTEMS; TRAFFIC CONTROL; TRANSPORTATION;

EID: 67649193495     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITSC.2003.1251951     Document Type: Conference Paper
Times cited : (24)

References (16)
  • 3
    • 0034274660 scopus 로고    scopus 로고
    • Multirate, multiresolution, recursive Kalman filter
    • Cristi, R. and Tummula, M., Multirate, multiresolution, recursive Kalman filter, Signal Processing 80 (2000) 1945-1958.
    • (2000) Signal Processing , vol.80 , pp. 1945-1958
    • Cristi, R.1    Tummula, M.2
  • 4
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and nonparametric models for traffic flow forecasting
    • Brian L. Smith, Billy M. Williams, R. Keith Oswald, Comparison of parametric and nonparametric models for traffic flow forecasting, Transportation Research Part C 10 (2002) 303-321
    • (2002) Transportation Research Part C , vol.10 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 5
    • 0000376321 scopus 로고
    • Traffic flow theory and chaotic behavior
    • National Research Council, Washington, DC
    • Disbro, J.E., Frame, M., 1989. Traffic flow theory and chaotic behavior. In: Transportation Research Record, TRB, vol. 1225. National Research Council, Washington, DC, pp. 109-115.
    • (1989) Transportation Research Record, TRB , vol.1225 , pp. 109-115
    • Disbro, J.E.1    Frame, M.2
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approimators
    • K. Hornik, "Multilayer feedforward networks are universal approimators", Neural Networks, vol.2, pp359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1
  • 8
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mapping by neural networks
    • Funahashi, "On the approximate realization of continuous mapping by neural networks", Neural Networks, vol.2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi1
  • 9
    • 0025635525 scopus 로고
    • Connectionist non-parametric regression: Multiplayer feedforward networks can learn arbitrary mapping
    • H. White, "Connectionist non-parametric regression: multiplayer feedforward networks can learn arbitrary mapping", Neural Networks, vol.3, pp.535-549, 1990.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 11
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • October
    • Haibo Chen and Susan Grant-Muller. Use of sequential learning for short-term traffic flow forecasting,Transportation Research Part C: Emerging Technologies, Volume 9, Issue 5, October 2001, Pages 319-336
    • (2001) Transportation Research Part C: Emerging Technologies , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 12
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • July/Aug
    • Smith, Brian L: Demetsky, Michael J, Traffic flow forecasting: comparison of modeling approaches, Journal of Transportation Engineering v 123 July/Aug 1997 p.261-266.
    • (1997) Journal of Transportation Engineering , vol.123 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 14
  • 16
    • 0031092866 scopus 로고    scopus 로고
    • Short-term inter-urban traffic forecasts using neural networks
    • Dougherty, M. and Cobbett, M., Short-term inter-urban traffic forecasts using neural networks. International Journal of Forecasting 13, 1997. pp. 21-31.
    • (1997) International Journal of Forecasting , vol.13 , pp. 21-31
    • Dougherty, M.1    Cobbett, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.