-
1
-
-
84921763695
-
-
Oxford University Press, Oxford
-
D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets (Oxford University Press, Oxford, 2006), and references therein.
-
(2006)
Molecular Nanomagnets
-
-
Gatteschi, D.1
Sessoli, R.2
Villain, J.3
-
2
-
-
0003799420
-
-
Cambridge University Press, Cambridge
-
E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment, Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, 1998), Vol. 4, and references therein.
-
(1998)
Macroscopic Quantum Tunneling of the Magnetic Moment, Cambridge Studies in Magnetism
, vol.4
-
-
Chudnovsky, E.M.1
Tejada, J.2
-
3
-
-
0001034766
-
-
10.1103/PhysRevLett.84.3454
-
I. Chiorescu, W. Wernsdorfer, A. Muller, H. Bogge, and B. Barbara, Phys. Rev. Lett. 84, 3454 (2000). 10.1103/PhysRevLett.84.3454
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 3454
-
-
Chiorescu, I.1
Wernsdorfer, W.2
Muller, A.3
Bogge, H.4
Barbara, B.5
-
4
-
-
18244369758
-
-
10.1103/PhysRevLett.94.147204
-
I. Rousochatzakis, Y. Ajiro, H. Mitamura, P. Kogerler, and M. Luban, Phys. Rev. Lett. 94, 147204 (2005). 10.1103/PhysRevLett.94.147204
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 147204
-
-
Rousochatzakis, I.1
Ajiro, Y.2
Mitamura, H.3
Kogerler, P.4
Luban, M.5
-
5
-
-
0037156893
-
-
10.1103/PhysRevLett.88.167201
-
M. Affronte, A. Cornia, A. Lascialfari, F. Borsa, D. Gatteschi, J. Hinderer, M. Horvatic, A. G. M. Jansen, and M. H. Julien, Phys. Rev. Lett. 88, 167201 (2002). 10.1103/PhysRevLett.88.167201
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 167201
-
-
Affronte, M.1
Cornia, A.2
Lascialfari, A.3
Borsa, F.4
Gatteschi, D.5
Hinderer, J.6
Horvatic, M.7
Jansen, A.G.M.8
Julien, M.H.9
-
7
-
-
4243826847
-
-
10.1103/PhysRevLett.4.228
-
T. Moriya, Phys. Rev. Lett. 4, 228 (1960). 10.1103/PhysRevLett.4.228
-
(1960)
Phys. Rev. Lett.
, vol.4
, pp. 228
-
-
Moriya, T.1
-
10
-
-
32644484517
-
-
10.1103/PhysRevLett.96.027206
-
O. Waldmann, C. Dobe, S. T. Ochsenbein, H. U. Gudel, and I. Sheikin, Phys. Rev. Lett. 96, 027206 (2006). 10.1103/PhysRevLett.96.027206
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 027206
-
-
Waldmann, O.1
Dobe, C.2
Ochsenbein, S.T.3
Gudel, H.U.4
Sheikin, I.5
-
11
-
-
34548161333
-
-
10.1103/PhysRevLett.99.087201
-
L. Schnelzer, O. Waldmann, M. Horvatic, S. T. Ochsenbein, S. Kramer, C. Berthier, H. U. Gudel, and B. Pilawa, Phys. Rev. Lett. 99, 087201 (2007). 10.1103/PhysRevLett.99.087201
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 087201
-
-
Schnelzer, L.1
Waldmann, O.2
Horvatic, M.3
Ochsenbein, S.T.4
Kramer, S.5
Berthier, C.6
Gudel, H.U.7
Pilawa, B.8
-
12
-
-
34247556964
-
-
10.1103/PhysRevB.75.184402
-
S. Miyahara, J. B. Fouet, S. R. Manmana, R. M. Noack, H. Mayaffre, I. Sheikin, C. Berthier, and F. Mila, Phys. Rev. B 75, 184402 (2007). 10.1103/PhysRevB.75.184402
-
(2007)
Phys. Rev. B
, vol.75
, pp. 184402
-
-
Miyahara, S.1
Fouet, J.B.2
Manmana, S.R.3
Noack, R.M.4
Mayaffre, H.5
Sheikin, I.6
Berthier, C.7
Mila, F.8
-
13
-
-
34347245608
-
-
10.1103/PhysRevB.75.174440
-
O. Waldmann, Phys. Rev. B 75, 174440 (2007). 10.1103/PhysRevB.75.174440
-
(2007)
Phys. Rev. B
, vol.75
, pp. 174440
-
-
Waldmann, O.1
-
18
-
-
4243468159
-
-
10.1103/PhysRevB.60.1038
-
I. Affleck and M. Oshikawa, Phys. Rev. B 60, 1038 (1999). 10.1103/PhysRevB.60.1038
-
(1999)
Phys. Rev. B
, vol.60
, pp. 1038
-
-
Affleck, I.1
Oshikawa, M.2
-
21
-
-
3042615476
-
-
10.1103/PhysRevLett.92.197202
-
L. Spanu and A. Parola, Phys. Rev. Lett. 92, 197202 (2004). 10.1103/PhysRevLett.92.197202
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 197202
-
-
Spanu, L.1
Parola, A.2
-
22
-
-
67649089717
-
-
Since CN N/2 Vb =Vb for N/2 even or odd, Vb contains representations with n=1,3,...,N-1 for N/2 even, and n=0,2,...,N-2 for N/2 odd. Thus a k=π momentum transfer necessary for the level mixing will first appear in (N/2) th order in d and only for N/2 even.
-
Since CN N/2 Vb =Vb for N/2 even or odd, Vb contains representations with n=1,3,...,N-1 for N/2 even, and n=0,2,...,N-2 for N/2 odd. Thus a k=π momentum transfer necessary for the level mixing will first appear in (N/2) th order in d and only for N/2 even.
-
-
-
-
23
-
-
67649123686
-
-
Here the mirror operation stands for a reflection through the xz plane followed by the time reversal operation T.
-
Here the mirror operation stands for a reflection through the xz plane followed by the time reversal operation T.
-
-
-
-
24
-
-
67649132083
-
-
For CsFe8, we have checked numerically that the off-diagonal coupling vj between the lowest levels at the jth LC field grows with j. For instance, at θ=-3.3°, v/d (0.1565,0.2858, 0.4291) at the lowest three LC fields Bc (0.734,1.145, 1.6373), while at θ=93.6°, v/d (0.9251,1.6327,2.3154) at the corresponding fields Bc (0.485,1.052,1.598). For a spin- s tetramer, vj =j j 8 (2j+1) [(4s+1) 2 - j2] dsinθ.
-
For CsFe8, we have checked numerically that the off-diagonal coupling vj between the lowest levels at the jth LC field grows with j. For instance, at θ=-3.3°, v/d (0.1565,0.2858, 0.4291) at the lowest three LC fields Bc (0.734,1.145, 1.6373), while at θ=93.6°, v/d (0.9251,1.6327,2.3154) at the corresponding fields Bc (0.485,1.052,1.598). For a spin- s tetramer, vj =j j 8 (2j+1) [(4s+1) 2 - j2] dsinθ.
-
-
-
-
25
-
-
67649102989
-
-
For instance, for the second and the third LC fields at θ=-3.3°, lowest order perturbation theory predicts dmax (0.0045, 0.0067) to be compared with the corresponding values (0.0117 and 0.0159) (cf. Fig. 4).
-
For instance, for the second and the third LC fields at θ=-3.3°, lowest order perturbation theory predicts dmax (0.0045, 0.0067) to be compared with the corresponding values (0.0117 and 0.0159) (cf. Fig. 4).
-
-
-
|