-
1
-
-
27644478289
-
Mathematical models and tools of kinetic theory towards modelling complex biological systems
-
Bellouquid A., and Delitala M. Mathematical models and tools of kinetic theory towards modelling complex biological systems. Math. Models Methods Appl. Sci. 15 (2005) 1639-1666
-
(2005)
Math. Models Methods Appl. Sci.
, vol.15
, pp. 1639-1666
-
-
Bellouquid, A.1
Delitala, M.2
-
3
-
-
36048964200
-
Complex multicellular systems and immune competition: New paradigms looking for a mathematical theory
-
Bellomo N., and Forni G. Complex multicellular systems and immune competition: New paradigms looking for a mathematical theory. Curr. Top. Dev. Biol. 81 (2008) 485-502
-
(2008)
Curr. Top. Dev. Biol.
, vol.81
, pp. 485-502
-
-
Bellomo, N.1
Forni, G.2
-
4
-
-
44349107599
-
On the foundations of cancer modelling: Selected topics, speculations, and perspectives
-
Bellomo N., Li N.K., and Maini P.K. On the foundations of cancer modelling: Selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18 (2008) 593-646
-
(2008)
Math. Models Methods Appl. Sci.
, vol.18
, pp. 593-646
-
-
Bellomo, N.1
Li, N.K.2
Maini, P.K.3
-
5
-
-
0023746235
-
Models of dispersal in biological systems
-
Othmer H.G., Dunbar S.R., and Alt W. Models of dispersal in biological systems. J. Math. Biol. 26 (1988) 263-298
-
(1988)
J. Math. Biol.
, vol.26
, pp. 263-298
-
-
Othmer, H.G.1
Dunbar, S.R.2
Alt, W.3
-
6
-
-
1042302643
-
From a class of kinetic models to the macroscopic equations for multicellular systems in biology
-
Bellomo N., and Bellouquid A. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete Contin. Dyn. Syst. Ser. B 4 (2004) 59-80
-
(2004)
Discrete Contin. Dyn. Syst. Ser. B
, vol.4
, pp. 59-80
-
-
Bellomo, N.1
Bellouquid, A.2
-
7
-
-
30344453406
-
On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis
-
Bellomo N., and Bellouquid A. On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis. Int. J. Non-Linear Mech. 41 (2006) 281-293
-
(2006)
Int. J. Non-Linear Mech.
, vol.41
, pp. 281-293
-
-
Bellomo, N.1
Bellouquid, A.2
-
8
-
-
34248193921
-
From microscopic to macroscopic description of multicellular systems and biological growing tissues
-
Bellomo N., Bellouquid A., and Herrero M. From microscopic to macroscopic description of multicellular systems and biological growing tissues. Comput. Math. Appl. 53 (2007) 647-663
-
(2007)
Comput. Math. Appl.
, vol.53
, pp. 647-663
-
-
Bellomo, N.1
Bellouquid, A.2
Herrero, M.3
-
9
-
-
35348846435
-
Multicellular growing systems: Hyperbolic limits towards macroscopic description
-
Bellomo N., Bellouquid A., Nieto J., and Soler J. Multicellular growing systems: Hyperbolic limits towards macroscopic description. Math. Models Methods Appl. Sci. 17 (2007) 1675-1693
-
(2007)
Math. Models Methods Appl. Sci.
, vol.17
, pp. 1675-1693
-
-
Bellomo, N.1
Bellouquid, A.2
Nieto, J.3
Soler, J.4
-
10
-
-
33750044093
-
Model hierarchies for cell aggregation by chemotaxis
-
Chalub F.A., Dolak-Struss Y., Markowich P., Oeltz D., Schmeiser C., and Soref A. Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16 (2006) 1173-1198
-
(2006)
Math. Models Methods Appl. Sci.
, vol.16
, pp. 1173-1198
-
-
Chalub, F.A.1
Dolak-Struss, Y.2
Markowich, P.3
Oeltz, D.4
Schmeiser, C.5
Soref, A.6
-
12
-
-
0034917420
-
The diffusion limit of transport equations derived from velocity-jump processes
-
Hillen T., and Othmer H. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61 (2000) 751-775
-
(2000)
SIAM J. Appl. Math.
, vol.61
, pp. 751-775
-
-
Hillen, T.1
Othmer, H.2
-
13
-
-
0036553052
-
The diffusion limit of transport equations II: Chemotaxis equations
-
Othmer H.G., and Hillen T. The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62 (2002) 1222-1250
-
(2002)
SIAM J. Appl. Math.
, vol.62
, pp. 1222-1250
-
-
Othmer, H.G.1
Hillen, T.2
-
14
-
-
0035605221
-
High field limit for the Vlasov-Poisson-Fokker-Plank system: A comparison of different perturbation methods
-
Bonilla L., and Soler J. High field limit for the Vlasov-Poisson-Fokker-Plank system: A comparison of different perturbation methods. Math. Models Methods Appl. Sci. 11 (2001) 1457-1681
-
(2001)
Math. Models Methods Appl. Sci.
, vol.11
, pp. 1457-1681
-
-
Bonilla, L.1
Soler, J.2
-
15
-
-
13844271463
-
Derivation of hyperbolic models for chemosensitive movement
-
Filbet F., Laurençot P., and Perthame B. Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50 (2005) 189-207
-
(2005)
J. Math. Biol.
, vol.50
, pp. 189-207
-
-
Filbet, F.1
Laurençot, P.2
Perthame, B.3
-
16
-
-
58749105961
-
-
Mollica F., Preziosi L., and Rajagopal K.R. (Eds), Birkäuser, Boston
-
In: Mollica F., Preziosi L., and Rajagopal K.R. (Eds). Modelling Biological Tissues (2006), Birkäuser, Boston
-
(2006)
Modelling Biological Tissues
-
-
-
18
-
-
0003054549
-
Solution of a new class of nonlinear kinetic models of population dynamics
-
Arlotti L., and Bellomo N. Solution of a new class of nonlinear kinetic models of population dynamics. Appl. Math. Lett. 9 (1996) 65-70
-
(1996)
Appl. Math. Lett.
, vol.9
, pp. 65-70
-
-
Arlotti, L.1
Bellomo, N.2
-
19
-
-
35348819870
-
Mathematical analysis and challenges arising from models of tumor growth
-
Friedman A. Mathematical analysis and challenges arising from models of tumor growth. Math. Models Methods Appl. Sci. 17 (2007) 1751-1772
-
(2007)
Math. Models Methods Appl. Sci.
, vol.17
, pp. 1751-1772
-
-
Friedman, A.1
-
21
-
-
54049101941
-
From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells
-
Bellomo N., and Delitala M. From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys. Life Rev. 5 (2008) 183-206
-
(2008)
Phys. Life Rev.
, vol.5
, pp. 183-206
-
-
Bellomo, N.1
Delitala, M.2
-
22
-
-
33846256703
-
A parabolic-hyperbolic free boundary problem modeling tumor treatment with virus
-
Tao Y., and Zang H. A parabolic-hyperbolic free boundary problem modeling tumor treatment with virus. Math. Models Methods Appl. Sci. 17 (2007) 63-80
-
(2007)
Math. Models Methods Appl. Sci.
, vol.17
, pp. 63-80
-
-
Tao, Y.1
Zang, H.2
|