메뉴 건너뛰기




Volumn 50, Issue 7, 2009, Pages 1129-1147

A new probabilistic fuzzy model: Fuzzification-Maximization (FM) approach

Author keywords

Coarse tuning; Fine tuning; Fuzzification Maximization; Noise; Probabilistic fuzzy model; Robust learning

Indexed keywords

COARSE TUNING; FINE TUNING; FUZZIFICATION-MAXIMIZATION; NOISE; PROBABILISTIC FUZZY MODEL; ROBUST LEARNING;

EID: 67449146702     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2009.05.004     Document Type: Article
Times cited : (4)

References (36)
  • 3
    • 60849089320 scopus 로고    scopus 로고
    • Learning weighted linguistic fuzzy rules by using specifically-tailored hybrid estimation of distribution algorithms
    • delaOssa L., Gámez J.A., and Puerta J.M. Learning weighted linguistic fuzzy rules by using specifically-tailored hybrid estimation of distribution algorithms. International Journal of Approximate Reasoning 50 3 (2009) 541-560
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.3 , pp. 541-560
    • delaOssa, L.1    Gámez, J.A.2    Puerta, J.M.3
  • 4
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Sugeno M., and Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1 1 (1993) 7-31
    • (1993) IEEE Transactions on Fuzzy Systems , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 5
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least squares learning
    • Wang L.X., and Mendel J.M. Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks 3 5 (1992) 807-814
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 6
    • 34249906133 scopus 로고    scopus 로고
    • Information granulation as a basis of fuzzy modeling
    • Kim E., and Pedrycz W. Information granulation as a basis of fuzzy modeling. Journal of Intelligent & Fuzzy Systems 18 2 (2007) 123-148
    • (2007) Journal of Intelligent & Fuzzy Systems , vol.18 , Issue.2 , pp. 123-148
    • Kim, E.1    Pedrycz, W.2
  • 7
    • 0000888528 scopus 로고
    • A neural fuzzy system with linguistic teaching signals
    • Lin C.-T., and Lu Y.-C. A neural fuzzy system with linguistic teaching signals. IEEE Transactions on Fuzzy Systems 3 2 (1995) 169-189
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.2 , pp. 169-189
    • Lin, C.-T.1    Lu, Y.-C.2
  • 9
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi H., and Nojima Y. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning 44 1 (2007) 4-31
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 11
    • 33751166396 scopus 로고    scopus 로고
    • Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation
    • Alcalá R., Alcalá-Fdez J., Herrera F., and Otero J. Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation. International Journal of Approximate Reasoning 44 1 (2007) 45-64
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 45-64
    • Alcalá, R.1    Alcalá-Fdez, J.2    Herrera, F.3    Otero, J.4
  • 12
    • 33751332990 scopus 로고    scopus 로고
    • Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study
    • Broekhoven E.V., Adriaenssens V., and Baets B.D. Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning 44 1 (2007) 65-90
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 65-90
    • Broekhoven, E.V.1    Adriaenssens, V.2    Baets, B.D.3
  • 13
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems Man and Cybernetics 15 1 (1985) 116-132
    • (1985) IEEE Transactions on Systems Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 14
    • 0022700023 scopus 로고
    • Fuzzy modeling and control of multilayer incinerator
    • Sugeno M., and Kang G.T. Fuzzy modeling and control of multilayer incinerator. Fuzzy Sets and Systems 18 (1986) 329-346
    • (1986) Fuzzy Sets and Systems , vol.18 , pp. 329-346
    • Sugeno, M.1    Kang, G.T.2
  • 15
  • 18
    • 55649119349 scopus 로고    scopus 로고
    • Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation
    • Choi J.-N., Oh S.-K., and Pedrycz W. Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation. International Journal of Approximate Reasoning 49 3 (2008) 631-648
    • (2008) International Journal of Approximate Reasoning , vol.49 , Issue.3 , pp. 631-648
    • Choi, J.-N.1    Oh, S.-K.2    Pedrycz, W.3
  • 21
    • 4344594491 scopus 로고    scopus 로고
    • Design of adaptive Takagi-Sugeno-Kang fuzzy models
    • Kukolj D. Design of adaptive Takagi-Sugeno-Kang fuzzy models. Applied Soft Computing 2 (2002) 89-103
    • (2002) Applied Soft Computing , vol.2 , pp. 89-103
    • Kukolj, D.1
  • 22
    • 0742290026 scopus 로고    scopus 로고
    • Identification of complex systems based on neural and Takagi-Sugeno fuzzy model
    • Kukolj D., and Levi E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34 1 (2004) 272-282
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.34 , Issue.1 , pp. 272-282
    • Kukolj, D.1    Levi, E.2
  • 25
  • 26
    • 0035696162 scopus 로고    scopus 로고
    • Robust TSK fuzzy modeling for function approximation with outliers
    • Chuang C.-C., Su S.-F., and Chen S.-S. Robust TSK fuzzy modeling for function approximation with outliers. IEEE Transactions on Fuzzy Systems 9 6 (2001) 810-821
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.6 , pp. 810-821
    • Chuang, C.-C.1    Su, S.-F.2    Chen, S.-S.3
  • 27
    • 33645833678 scopus 로고    scopus 로고
    • A new approach to fuzzy modeling of nonlinear dynamic systems with noise: relevance vector learning mechanism
    • Kim J., Suga Y., and Won S. A new approach to fuzzy modeling of nonlinear dynamic systems with noise: relevance vector learning mechanism. IEEE Transactions on Fuzzy Systems 14 2 (2006) 222-231
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.2 , pp. 222-231
    • Kim, J.1    Suga, Y.2    Won, S.3
  • 29
    • 0002106054 scopus 로고    scopus 로고
    • A random sets-based method for identifying fuzzy models
    • Sanchez L. A random sets-based method for identifying fuzzy models. Fuzzy Sets and Systems 98 (1998) 343-354
    • (1998) Fuzzy Sets and Systems , vol.98 , pp. 343-354
    • Sanchez, L.1
  • 32
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 7 (1998) 1895-1923
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 34
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high performance concrete using artificial neural networks
    • Yeh I.-C. Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research 28 12 (1998) 1797-1808
    • (1998) Cement and Concrete Research , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.-C.1
  • 36
    • 0004114283 scopus 로고
    • PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms
    • Technical report 21/94, Fakultät für Informatik, Universität Karlsruhe
    • L. Prechelt, PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms, Technical report 21/94, Fakultät für Informatik, Universität Karlsruhe, 1994.
    • (1994)
    • Prechelt, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.