-
1
-
-
79961019387
-
On the completeness problem for fractional rationals with incommensurable differentiation orders
-
Seoul, Korea, July 6-11
-
Akcay, H., Malti, R.: On the completeness problem for fractional rationals with incommensurable differentiation orders. In: Proceedings of the 17th World Congress IFAC, pp. 15367-15371, Seoul, Korea, July 6-11 (2008)
-
(2008)
Proceedings of the 17th World Congress IFAC
, pp. 15367-15371
-
-
Akcay, H.1
Malti, R.2
-
3
-
-
1842621886
-
-
World Scientific Singapore
-
Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Noninteger Order Circuits and Systems-An Introduction. World Scientific, Singapore (2000)
-
(2000)
Nonlinear Noninteger Order Circuits and Systems-An Introduction
-
-
Arena, P.1
Caponetto, R.2
Fortuna, L.3
Porto, D.4
-
4
-
-
20444477489
-
Hyperchaos in fractional-order nonlinear systems
-
W.M. Ahmad 2005 Hyperchaos in fractional-order nonlinear systems Chaos Solitons Fractals 26 1459 1465
-
(2005)
Chaos Solitons Fractals
, vol.26
, pp. 1459-1465
-
-
Ahmad, W.M.1
-
6
-
-
0003956339
-
-
UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia
-
Dorčák, L.: Numerical models for simulation of the fractional-order control systems. UEF-04-94, The Academy of Sciences, Inst. of Experimental Physic, Košice, Slovakia (1994)
-
(1994)
Numerical Models for Simulation of the Fractional-order Control Systems
-
-
Dorčák, L.1
-
9
-
-
15544372160
-
Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review
-
DOI 10.1007/s11071-004-3752-x
-
Y.Q. Chen B.M. Vinagre I. Podlubny 2004 Continued fraction expansion approaches to discretizing fractional-order derivatives-An expository review Nonlinear Dyn. 38 1-4 155 170 (Pubitemid 40400613)
-
(2004)
Nonlinear Dynamics
, vol.38
, Issue.1-4
, pp. 155-170
-
-
Chen, Y.1
Vinagre, B.M.2
Podlubny, I.3
-
10
-
-
18844427587
-
Chaos synchronization of the fractional Lu system
-
W.H. Deng C.P. Li 2005 Chaos synchronization of the fractional Lu system Physica A 353 61 72
-
(2005)
Physica A
, vol.353
, pp. 61-72
-
-
Deng, W.H.1
Li, C.P.2
-
11
-
-
34249335010
-
Short memory principle and a predictor-corrector approach for fractional differential equations
-
DOI 10.1016/j.cam.2006.06.008, PII S0377042706004201
-
W. Deng 2007 Short memory principle and a predictor-corrector approach for fractional differential equations J. Comput. Appl. Math. 206 174 188 (Pubitemid 46817752)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.206
, Issue.1
, pp. 174-188
-
-
Deng, W.1
-
12
-
-
36149001762
-
Numerical algorithm for the time fractional Fokker-Planck equation
-
W. Deng 2007 Numerical algorithm for the time fractional Fokker-Planck equation J. Comput. Phys. 227 1510 1522
-
(2007)
J. Comput. Phys.
, vol.227
, pp. 1510-1522
-
-
Deng, W.1
-
13
-
-
0035625795
-
The numerical solution of fractional differential equations: Speed versus accuracy
-
Manchester Centre for Computational Mathematics, Manchester
-
Ford, N., Simpson, A.: The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Analysis Report 385, Manchester Centre for Computational Mathematics, Manchester (2001)
-
(2001)
Numerical Analysis Report 385
-
-
Ford, N.1
Simpson, A.2
-
14
-
-
12444328794
-
Chaos in the fractional order periodically forced complex Duffing's oscillators
-
DOI 10.1016/j.chaos.2004.09.090, PII S0960077904006058
-
X. Gao J. Yu 2005 Chaos in the fractional-order periodically forced complex Duffing's oscillators Chaos Solitons Fractals 24 1097 1104 (Pubitemid 40146214)
-
(2005)
Chaos, Solitons and Fractals
, vol.24
, Issue.4
, pp. 1097-1104
-
-
Gao, X.1
Yu, J.2
-
17
-
-
0036530321
-
A note on time-domain simulation of feedback fractional-order systems
-
Ch. Hwang J.F. Leu S.Y. Tsay 2002 A note on time-domain simulation of feedback fractional-order systems IEEE Trans. Autom. Control 47 4 625 631
-
(2002)
IEEE Trans. Autom. Control
, vol.47
, Issue.4
, pp. 625-631
-
-
Hwang, Ch.1
Leu, J.F.2
Tsay, S.Y.3
-
18
-
-
3342927052
-
Chaos and hyperchaos in the fractional-order Rossler equations
-
Ch. Li G. Chen 2004 Chaos and hyperchaos in the fractional-order Rossler equations Physica A 341 55 61
-
(2004)
Physica A
, vol.341
, pp. 55-61
-
-
Li, Ch.1
Chen, G.2
-
19
-
-
1842832060
-
Chaos in Chen's system with a fractional order
-
Ch. Li G. Peng 2004 Chaos in Chen's system with a fractional order Chaos Solitons Fractals 22 443 450
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 443-450
-
-
Li, Ch.1
Peng, G.2
-
20
-
-
23144435914
-
A note on the fractional-order Chen system
-
DOI 10.1016/j.chaos.2005.04.037, PII S0960077905003590
-
J.G. Lu G. Chen 2006 A note on the fractional-order Chen system Chaos Solitons Fractals 27 685 688 (Pubitemid 41084201)
-
(2006)
Chaos, Solitons and Fractals
, vol.27
, Issue.3
, pp. 685-688
-
-
Lu, J.G.1
Chen, G.2
-
21
-
-
19144371559
-
Chaotic dynamics and synchronization of fractional-order Arneodo's systems
-
J.G. Lu 2005 Chaotic dynamics and synchronization of fractional-order Arneodo's systems Chaos Solitons Fractals 26 1125 1133
-
(2005)
Chaos Solitons Fractals
, vol.26
, pp. 1125-1133
-
-
Lu, J.G.1
-
22
-
-
23844464799
-
Chaotic dynamics and synchronization of fractional-order Chua's circuits with a piecewise-linear nonlinearity
-
J.G. Lu 2005 Chaotic dynamics and synchronization of fractional-order Chua's circuits with a piecewise-linear nonlinearity Int. J. Mod. Phys. B 19 20 3249 3259
-
(2005)
Int. J. Mod. Phys. B
, vol.19
, Issue.20
, pp. 3249-3259
-
-
Lu, J.G.1
-
24
-
-
0000196448
-
Basic characteristics of a fractance device
-
M. Nakagava K. Sorimachi 1992 Basic characteristics of a fractance device IEICE Trans. Fundam. E75-A 12 1814 1818
-
(1992)
IEICE Trans. Fundam.
, vol.75
, Issue.12
, pp. 1814-1818
-
-
Nakagava, M.1
Sorimachi, K.2
-
25
-
-
0002339320
-
The effects of continuously varying the fractional differential order of chaotic nonlinear systems
-
S. Nimmo A.K. Evans 1999 The effects of continuously varying the fractional differential order of chaotic nonlinear systems Chaos Solitons Fractals 10 7 1111 1118
-
(1999)
Chaos Solitons Fractals
, vol.10
, Issue.7
, pp. 1111-1118
-
-
Nimmo, S.1
Evans, A.K.2
-
28
-
-
23844549787
-
Control of fractional-order Chua's system
-
I. Petráš 2002 Control of fractional-order Chua's system J. Electr. Eng. 53 07-08 219 222
-
(2002)
J. Electr. Eng.
, vol.53
, Issue.708
, pp. 219-222
-
-
Petráš, I.1
-
29
-
-
67449143012
-
Fractional-order control systems: Modelling and simulation
-
I. Petráš L. Dorčák 2003 Fractional-order control systems: modelling and simulation Fract. Calc. Appl. Anal. 6 2 205 232
-
(2003)
Fract. Calc. Appl. Anal.
, vol.6
, Issue.2
, pp. 205-232
-
-
Petráš, I.1
Dorčák, L.2
-
30
-
-
54949116025
-
Method for simulation of the fractional-order chaotic systems
-
I. Petráš 2006 Method for simulation of the fractional-order chaotic systems Acta Montanistica Slovaca 11 4 273 277
-
(2006)
Acta Montanistica Slovaca
, vol.11
, Issue.4
, pp. 273-277
-
-
Petráš, I.1
-
31
-
-
41849104190
-
A note on the fractional-order Chua's system
-
I. Petráš 2008 A note on the fractional-order Chua's system Chaos Solitons Fractals 38 1 140 147
-
(2008)
Chaos Solitons Fractals
, vol.38
, Issue.1
, pp. 140-147
-
-
Petráš, I.1
-
36
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
I. Podlubny 2002 Geometric and physical interpretation of fractional integration and fractional differentiation Fract. Calc. Appl. Anal. 5 4 367 386
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, Issue.4
, pp. 367-386
-
-
Podlubny, I.1
-
38
-
-
33744801528
-
Matrix approach to discrete fractional calculus
-
I. Podlubny 2000 Matrix approach to discrete fractional calculus Fract. Calc. Appl. Anal. 3 4 359 386
-
(2000)
Fract. Calc. Appl. Anal.
, vol.3
, Issue.4
, pp. 359-386
-
-
Podlubny, I.1
-
39
-
-
79952346428
-
-
(September 2005). web: visited: May 23 (2008)
-
Valerio, D.: Toolbox ninteger for Matlab, v.2.3 (September 2005). web: http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm, visited: May 23 (2008)
-
Toolbox Ninteger for Matlab, v.2.3
-
-
Valerio, D.1
-
40
-
-
0242270972
-
Two direct Tustin discretization methods for fractional-order differentiator/integrator
-
B.M. Vinagre Y.Q. Chen I. Petráš 2003 Two direct Tustin discretization methods for fractional-order differentiator/integrator J. Franklin Inst. 340 349 362
-
(2003)
J. Franklin Inst.
, vol.340
, pp. 349-362
-
-
Vinagre, B.M.1
Chen, Y.Q.2
Petráš, I.3
-
41
-
-
37549042003
-
Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems
-
M.S. Tavazoei M. Haeri 2007 Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems IET Signal Process. 1 4 171 181
-
(2007)
IET Signal Process.
, vol.1
, Issue.4
, pp. 171-181
-
-
Tavazoei, M.S.1
Haeri, M.2
-
42
-
-
34347330038
-
A necessary condition for double scroll attractor existence in fractional-Order systems
-
M.S. Tavazoei M. Haeri 2007 A necessary condition for double scroll attractor existence in fractional-Order systems Phys. Lett. A 367 102 113
-
(2007)
Phys. Lett. A
, vol.367
, pp. 102-113
-
-
Tavazoei, M.S.1
Haeri, M.2
-
43
-
-
44649156296
-
Limitations of frequency domain approximation for detecting chaos in fractional order systems
-
M.S. Tavazoei M. Haeri 2008 Limitations of frequency domain approximation for detecting chaos in fractional order systems Nonlinear Anal. 69 1299 1320
-
(2008)
Nonlinear Anal.
, vol.69
, pp. 1299-1320
-
-
Tavazoei, M.S.1
Haeri, M.2
-
44
-
-
0023401151
-
REALIZATIONS OF GENERALIZED WARBURG IMPEDANCE WITH RC LADDER NETWORKS AND TRANSMISSION LINES.
-
J.C. Wang 1987 Realizations of generalized Warburg impedance with RC ladder networks and transmission lines J. Electrochem. Soc. 134 8 1915 1920 (Pubitemid 17659042)
-
(1987)
Journal of the Electrochemical Society
, vol.134
, Issue.8
, pp. 1915-1920
-
-
Wang, J.C.1
|