-
1
-
-
0033235339
-
-
10.1103/RevModPhys.71.1253
-
W. Kohn, Rev. Mod. Phys. 71, 1253 (1999). 10.1103/RevModPhys.71.1253
-
(1999)
Rev. Mod. Phys.
, vol.71
, pp. 1253
-
-
Kohn, W.1
-
4
-
-
24144463778
-
-
10.1063/1.1904565
-
J. P. Perdew, J. Chem. Phys. 123, 062201 (2005). 10.1063/1.1904565
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 062201
-
-
Perdew, J.P.1
-
5
-
-
4243553426
-
-
10.1103/PhysRevA.38.3098
-
A. D. Becke, Phys. Rev. A 38, 3098 (1988). 10.1103/PhysRevA.38.3098
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3098
-
-
Becke, A.D.1
-
7
-
-
85029400214
-
-
10.1103/PhysRevLett.80.890;
-
Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998) 10.1103/PhysRevLett.80.890
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 890
-
-
Zhang, Y.1
Yang, W.2
-
12
-
-
33745208986
-
-
10.1103/PhysRevB.73.235116
-
Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006). 10.1103/PhysRevB.73.235116
-
(2006)
Phys. Rev. B
, vol.73
, pp. 235116
-
-
Wu, Z.1
Cohen, R.E.2
-
13
-
-
41849095114
-
-
10.1103/PhysRevLett.100.136406
-
J. P. Perdew, Phys. Rev. Lett. 100, 136406 (2008). 10.1103/PhysRevLett. 100.136406
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 136406
-
-
Perdew, J.P.1
-
15
-
-
57449088398
-
-
10.1103/PhysRevLett.101.239702;
-
J. P. Perdew, Phys. Rev. Lett. 101, 239702 (2008) 10.1103/PhysRevLett. 101.239702
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 239702
-
-
Perdew, J.P.1
-
16
-
-
59949095600
-
-
10.1103/PhysRevLett.102.039902;
-
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 102, 039902 (2009) 10.1103/PhysRevLett.102.039902
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 039902
-
-
Perdew, J.P.1
Ruzsinszky, A.2
Csonka, G.I.3
Vydrov, O.A.4
Scuseria, G.E.5
Constantin, L.A.6
Zhou, X.7
Burke, K.8
-
18
-
-
61549134825
-
-
10.1103/PhysRevB.79.085104
-
P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009). 10.1103/PhysRevB.79.085104
-
(2009)
Phys. Rev. B
, vol.79
, pp. 085104
-
-
Haas, P.1
Tran, F.2
Blaha, P.3
-
20
-
-
33644936253
-
-
10.1103/PhysRevB.72.085108
-
R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005). 10.1103/PhysRevB.72.085108
-
(2005)
Phys. Rev. B
, vol.72
, pp. 085108
-
-
Armiento, R.1
Mattsson, A.E.2
-
21
-
-
0242593713
-
-
10.1103/PhysRevLett.91.146401
-
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003). 10.1103/PhysRevLett.91.146401
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 146401
-
-
Tao, J.1
Perdew, J.P.2
Staroverov, V.N.3
Scuseria, G.E.4
-
22
-
-
38549119424
-
-
10.1103/PhysRevLett.100.036401
-
L. A. Constantin, Phys. Rev. Lett. 100, 036401 (2008). 10.1103/PhysRevLett.100.036401
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 036401
-
-
Constantin, L.A.1
-
23
-
-
34447122608
-
-
10.1103/PhysRevB.76.035403
-
B. Wood, N. D. M. Hine, W. M. C. Foulkes, and P. Garcia-Gonzalez, Phys. Rev. B 76, 035403 (2007). 10.1103/PhysRevB.76.035403
-
(2007)
Phys. Rev. B
, vol.76
, pp. 035403
-
-
Wood, B.1
Hine, N.D.M.2
Foulkes, W.M.C.3
Garcia-Gonzalez, P.4
-
29
-
-
67449084446
-
-
Atoms tested: Z=3 (Li) to Z=28 (Ni).
-
Atoms tested: Z=3 (Li) to Z=28 (Ni)
-
-
-
-
30
-
-
25344450852
-
-
Benchmark data from 10.1103/PhysRevA.47.3649;
-
Benchmark data from S. J. Chakravorty, Phys. Rev. A 47, 3649 (1993) 10.1103/PhysRevA.47.3649
-
(1993)
Phys. Rev. A
, vol.47
, pp. 3649
-
-
Chakravorty, S.J.1
-
31
-
-
0001598263
-
-
and from 10.1103/PhysRevA.39.2290
-
and from S. J. Chakravorty and E. Clementi, Phys. Rev. A 39, 2290 (1989). 10.1103/PhysRevA.39.2290
-
(1989)
Phys. Rev. A
, vol.39
, pp. 2290
-
-
Chakravorty, S.J.1
Clementi, E.2
-
32
-
-
67449085996
-
-
Molecules tested: H2 O, NH3, O2, N2, CH4, H2, F2, Li2, LiF, OH, LiH, NaCl, SiH4, and C6 H6.
-
Molecules tested: H2 O, NH3, O2, N2, CH4, H2, F2, Li2, LiF, OH, LiH, NaCl, SiH4, and C6 H6
-
-
-
-
33
-
-
67449092942
-
-
Benchmark atomization energies from (i) Ref.;
-
Benchmark atomization energies from (i) Ref.
-
-
-
-
34
-
-
0141917879
-
-
(ii) NIST Standard Reference DataBase No. 69, edited by W. G. Mallard and P. J. Linstrom (National Institute of Standards and Technology, Gaithersburg, MD
-
(ii) H. Y. Afeefy, J. F. Liedman, and S. E. Stein, in NIST Chemistry WebBook, NIST Standard Reference DataBase No. 69, edited by, W. G. Mallard, and, P. J. Linstrom, (National Institute of Standards and Technology, Gaithersburg, MD, 1998).
-
(1998)
NIST Chemistry WebBook
-
-
Afeefy, H.Y.1
Liedman, J.F.2
Stein, S.E.3
-
35
-
-
2942542478
-
-
Benchmark geometries from (i) 10.1021/ja00509a013;
-
Benchmark geometries from (i) D. J. DeFrees, J. Am. Chem. Soc. 101, 4085 (1979) 10.1021/ja00509a013
-
(1979)
J. Am. Chem. Soc.
, vol.101
, pp. 4085
-
-
Defrees, D.J.1
-
36
-
-
0001421124
-
-
(ii) 10.1021/ja00008a068
-
(ii) C. S. Yannoni, J. Am. Chem. Soc. 113, 3190 (1991). 10.1021/ja00008a068
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 3190
-
-
Yannoni, C.S.1
-
37
-
-
67449100080
-
-
Solids tested: C, Si, Ge, AlN, GaN, GaAs, ZnS, Au, Ag, Al, Na, Pd, and MgO.
-
Solids tested: C, Si, Ge, AlN, GaN, GaAs, ZnS, Au, Ag, Al, Na, Pd, and MgO
-
-
-
-
38
-
-
67449092943
-
-
Benchmark lattice constants are from Ref.;
-
Benchmark lattice constants are from Ref.
-
-
-
-
39
-
-
1642408436
-
-
bulk moduli and cohesive energies are from 10.1103/PhysRevB.69.075102;
-
bulk moduli and cohesive energies are from V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Phys. Rev. B 69, 075102 (2004) (C, Si, and Ge) 10.1103/PhysRevB.69.075102
-
(2004)
Phys. Rev. B
, vol.69
, pp. 075102
-
-
Staroverov, V.N.1
Scuseria, G.E.2
Tao, J.3
Perdew, J.P.4
-
40
-
-
27644519159
-
-
from 10.1063/1.2085170;
-
from J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005) (AlN, GaN, and ZnS) 10.1063/1.2085170
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 174101
-
-
Heyd, J.1
Peralta, J.E.2
Scuseria, G.E.3
Martin, R.L.4
-
42
-
-
0000999524
-
-
from 10.1103/PhysRevB.49.14179;
-
from M. Catti, G. Valerio, R. Dovesi, and M. Causà, Phys. Rev. B 49, 14179 (1994) (MgO) 10.1103/PhysRevB.49.14179
-
(1994)
Phys. Rev. B
, vol.49
, pp. 14179
-
-
Catti, M.1
Valerio, G.2
Dovesi, R.3
Causà, M.4
-
43
-
-
40849134058
-
-
and from 10.1103/PhysRevB.77.085414
-
and from M. Alaei, H. Akbarzadeh, H. Gholizadeh, and S. de Gironcoli, Phys. Rev. B 77, 085414 (2008) (Au). 10.1103/PhysRevB.77.085414
-
(2008)
Phys. Rev. B
, vol.77
, pp. 085414
-
-
Alaei, M.1
Akbarzadeh, H.2
Gholizadeh, H.3
De Gironcoli, S.4
-
44
-
-
0037171091
-
-
10.1088/0953-8984/14/11/302
-
J. M. Soler, J. Phys.: Condens. Matter 14, 2745 (2002). 10.1088/0953-8984/14/11/302
-
(2002)
J. Phys.: Condens. Matter
, vol.14
, pp. 2745
-
-
Soler, J.M.1
-
45
-
-
67449085213
-
-
CPMD V3.13, Copyright IBM Corp.
-
CPMD V3.13, Copyright IBM Corp. (1990 - 2008), Copyright MPI für Festkörperforschung Stuttgart (1997 - 2001).
-
(1990)
-
-
-
46
-
-
67449108210
-
-
After completion of our calculations, we were informed by J. P. Perdew that in the supplementary EPAPS material of Ref. the last table contains, in a column without label, four numbers that report lattice constants of solids obtained with the combination of parameters we here refer to as PBE (Gc, Gx). Consistent with what we find here, these numbers also indicate that PBE (Gc, Gx) is superior for solids to PBE (Js, Gx) =PBEsol.
-
After completion of our calculations, we were informed by J. P. Perdew that in the supplementary EPAPS material of Ref. the last table contains, in a column without label, four numbers that report lattice constants of solids obtained with the combination of parameters we here refer to as PBE (Gc, Gx). Consistent with what we find here, these numbers also indicate that PBE (Gc, Gx) is superior for solids to PBE (Js, Gx) =PBEsol.
-
-
-
-
47
-
-
67449108567
-
-
We note that unlike lattice constants and bulk moduli, the cohesive energy of solids and the atomization energy of molecules depend on the atomic energies for which PBE (Gc, Gx) performs worst. For solid-state and molecular properties not depending on calculations for isolated atoms, the advantage of PBE (Gc, Gx) is more pronounced.
-
We note that unlike lattice constants and bulk moduli, the cohesive energy of solids and the atomization energy of molecules depend on the atomic energies for which PBE (Gc, Gx) performs worst. For solid-state and molecular properties not depending on calculations for isolated atoms, the advantage of PBE (Gc, Gx) is more pronounced.
-
-
-
-
48
-
-
67449103275
-
-
This result conforms to the discussion of formal properties of the functionals sketched in the introduction: Of all possible variations of PBE (β,μ), only PBE (Gc, Gx) and PBE (Js, Jr) take their parameters from the same source, thereby allowing the benefit of error cancellation to a larger extent than mixed choices. And of all possible alternatives to the original PBE, only PBE (Gc, Gx) and PBE (Jr, Gx) do not use TPSS JSEs that themselves were obtained using the original PBE functional within TPSS. We recognize that neither of these two criteria is very stringent, but we also note that taken together they uniquely select PBE (Gc, Gx) as the most appealing variant, independently of, but in agreement with, the empirical findings presented above.
-
This result conforms to the discussion of formal properties of the functionals sketched in the introduction: Of all possible variations of PBE (β,μ), only PBE (Gc, Gx) and PBE (Js, Jr) take their parameters from the same source, thereby allowing the benefit of error cancellation to a larger extent than mixed choices. And of all possible alternatives to the original PBE, only PBE (Gc, Gx) and PBE (Jr, Gx) do not use TPSS JSEs that themselves were obtained using the original PBE functional within TPSS. We recognize that neither of these two criteria is very stringent, but we also note that taken together they uniquely select PBE (Gc, Gx) as the most appealing variant, independently of, but in agreement with, the empirical findings presented above.
-
-
-
-
49
-
-
3343014210
-
-
10.1103/PhysRevLett.82.2544
-
J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999). 10.1103/PhysRevLett.82.2544
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 2544
-
-
Perdew, J.P.1
Kurth, S.2
Zupan, A.3
Blaha, P.4
|