메뉴 건너뛰기




Volumn 9, Issue 3, 2009, Pages 954-961

Modeling nonlinear elastic behavior of reinforced soil using artificial neural networks

Author keywords

Modeling; Neural networks; Reinforced soil

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; AS CONTENTS; COMPOSITE SOILS; CONFINING PRESSURES; CONSTRUCTION MATERIALS; CONTINUOUS IMPROVEMENTS; CURING TIME; ELASTIC BEHAVIORS; EXPERIMENTAL DATUM; FIBER CONTENTS; HIGHLY NONLINEAR; MODELING; NEURAL NETWORK MODELS; NON-LINEAR ELASTIC BEHAVIORS; NON-LINEAR FUNCTIONS; PARAMETER SENSITIVITIES; QUALITY INFORMATIONS; REINFORCED SOIL; SHEAR MODULUS; SHORT FIBERS; SOIL MECHANICAL PROPERTIES; SOIL SAMPLES; STRESS AND STRAINS; TRIAXIAL SHEARINGS;

EID: 67349239319     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2008.11.013     Document Type: Article
Times cited : (37)

References (10)
  • 1
    • 0028827928 scopus 로고
    • Continuum versus structural approach to stability of reinforced soil
    • Michalowiski R.L., and Zhao A. Continuum versus structural approach to stability of reinforced soil. J. Geotech. Eng. ASCE 121 2 (1995) 152-162
    • (1995) J. Geotech. Eng. ASCE , vol.121 , Issue.2 , pp. 152-162
    • Michalowiski, R.L.1    Zhao, A.2
  • 2
    • 0036817748 scopus 로고    scopus 로고
    • Nonlinear elastic behavior of fiber-reinforced soil under cycle loading
    • Li J., and Ding D.W. Nonlinear elastic behavior of fiber-reinforced soil under cycle loading. J. Soil Dyn. Earthquake Eng. 22 9 (2002) 265-271
    • (2002) J. Soil Dyn. Earthquake Eng. , vol.22 , Issue.9 , pp. 265-271
    • Li, J.1    Ding, D.W.2
  • 4
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neur. Netw. 2 (1989) 359-366
    • (1989) Neur. Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Inform. Theory 39 (1993) 930-945
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 6
    • 0028137961 scopus 로고
    • Adaptive control of nonlinear multivariable systems using neural networks
    • Narendra K.S., and Mukhopadhyay S. Adaptive control of nonlinear multivariable systems using neural networks. Neur. Netw. 7 (1994) 737-752
    • (1994) Neur. Netw. , vol.7 , pp. 737-752
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 7
    • 0036893704 scopus 로고    scopus 로고
    • Prediction of design parameter in civil engineering problems using SLNN with a single hidden RBF neuron
    • Rajasekaran S., and Amalraj R. Prediction of design parameter in civil engineering problems using SLNN with a single hidden RBF neuron. Comput. Struct. 80 31 (2002) 2495-2505
    • (2002) Comput. Struct. , vol.80 , Issue.31 , pp. 2495-2505
    • Rajasekaran, S.1    Amalraj, R.2
  • 9
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neur. Netw. 5 (1994) 989-993
    • (1994) IEEE Trans. Neur. Netw. , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 10
    • 67349093720 scopus 로고    scopus 로고
    • G.A.F. Seber, C.J. Wild, Nonlinear Regression, John Wiley and Sons, New York
    • G.A.F. Seber, C.J. Wild, Nonlinear Regression, John Wiley and Sons, New York.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.