메뉴 건너뛰기




Volumn 57, Issue 11-12, 2009, Pages 2009-2015

Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks

Author keywords

Fuzzy neural; Networks chaotic; Quantum inspired genetic algorithm

Indexed keywords

CHAOS MUTATIONS; EVOLUTION PROCESS; FASTER CONVERGENCES; FUZZY NEURAL; GRADIENT-BASED METHODS; LEARNING METHODS; LEARNING PROCESS; LOCAL MINIMUMS; NETWORKS CHAOTIC; NON-LINEAR FUNCTIONS; QUANTUM GENETIC ALGORITHMS; QUANTUM-INSPIRED GENETIC ALGORITHM; RANDOM SEARCHES; REAL NUMBERS; REAL-CODED; SEARCHING SPEED; SIMULATION RESULTS; SOLUTION SPACES;

EID: 67349237504     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2008.10.048     Document Type: Article
Times cited : (66)

References (6)
  • 2
    • 0036945847 scopus 로고    scopus 로고
    • Quantum-inspired evolutionary algorithm for a class of combinatorial optimization
    • Han K.-H., and Kim J.-H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation 4 (2002) 580-593
    • (2002) IEEE Transactions on Evolutionary Computation , vol.4 , pp. 580-593
    • Han, K.-H.1    Kim, J.-H.2
  • 3
    • 0033666472 scopus 로고    scopus 로고
    • Genetic quantum algorithm and its application to combinatorial optimization problem
    • La Jolla
    • K.-H. Han, J.-H. Kim, Genetic quantum algorithm and its application to combinatorial optimization problem, in: IEEE International Conference on Evolutionary Computation, La Jolla, 2000, pp. 1354-1360
    • (2000) IEEE International Conference on Evolutionary Computation , pp. 1354-1360
    • Han, K.-H.1    Kim, J.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.