-
1
-
-
67349155877
-
Towards fractal geomorphology
-
[in Chinese]
-
Ai N.S., Chen R., and Li H.Q. Towards fractal geomorphology. Geogr Territorial Res 15 1 (1999) 92-96 [in Chinese]
-
(1999)
Geogr Territorial Res
, vol.15
, Issue.1
, pp. 92-96
-
-
Ai, N.S.1
Chen, R.2
Li, H.Q.3
-
2
-
-
84937149683
-
A theoretical foundation for the gravity equation
-
Anderson J.E. A theoretical foundation for the gravity equation. Am Econ Rev 69 (1979) 106-116
-
(1979)
Am Econ Rev
, vol.69
, pp. 106-116
-
-
Anderson, J.E.1
-
3
-
-
0022178811
-
Fractals take a central place
-
Arlinghaus S. Fractals take a central place. Geogr Ann 67B (1985) 83-88
-
(1985)
Geogr Ann
, vol.67 B
, pp. 83-88
-
-
Arlinghaus, S.1
-
4
-
-
0038513959
-
Scale-free networks
-
Barabasi A.-L., and Bonabeau E. Scale-free networks. Sci Am 288 5 (2003) 50-59
-
(2003)
Sci Am
, vol.288
, Issue.5
, pp. 50-59
-
-
Barabasi, A.-L.1
Bonabeau, E.2
-
8
-
-
0003410292
-
-
Prentice Hall, Upper Saddle River, NJ
-
Box G.E.P., Jenkins G.M., and Reinsel G.C. Time series analysis: forecasting and control. 3rd ed. (1994), Prentice Hall, Upper Saddle River, NJ
-
(1994)
Time series analysis: forecasting and control. 3rd ed.
-
-
Box, G.E.P.1
Jenkins, G.M.2
Reinsel, G.C.3
-
10
-
-
0035510912
-
A study of multifractals measures of the spatial structure of the urban system in Central Plains
-
[in Chinese]
-
Chen Y.G., and Zhou Y.X. A study of multifractals measures of the spatial structure of the urban system in Central Plains. Acta Scientiarum Naturalium Universitatis Pekinensis 37 (2001) 810-818 [in Chinese]
-
(2001)
Acta Scientiarum Naturalium Universitatis Pekinensis
, vol.37
, pp. 810-818
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
11
-
-
0347022689
-
The rank-size rule and fractal hierarchies of cities: mathematical models and empirical analyses
-
Chen Y.G., and Zhou Y.X. The rank-size rule and fractal hierarchies of cities: mathematical models and empirical analyses. Environ Planning B: Planning Des 30 (2003) 799-818
-
(2003)
Environ Planning B: Planning Des
, vol.30
, pp. 799-818
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
12
-
-
2442563863
-
Multifractal measures of city-size distributions based on the three-parameter Zipf model
-
Chen Y.G., and Zhou Y.X. Multifractal measures of city-size distributions based on the three-parameter Zipf model. Chaos, Solitons & Fractals 22 (2004) 793-805
-
(2004)
Chaos, Solitons & Fractals
, vol.22
, pp. 793-805
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
13
-
-
33745124368
-
Reinterpreting central place networks using ideas from fractals and self-organized criticality
-
Chen Y.G., and Zhou Y.X. Reinterpreting central place networks using ideas from fractals and self-organized criticality. Environ Planning B: Planning Des 33 (2006) 345-364
-
(2006)
Environ Planning B: Planning Des
, vol.33
, pp. 345-364
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
14
-
-
34548534433
-
Scaling laws and indications of self-organized criticality in urban systems
-
Chen Y.G., and Zhou Y.X. Scaling laws and indications of self-organized criticality in urban systems. Chaos, Solitons & Fractals 35 1 (2008) 85-98
-
(2008)
Chaos, Solitons & Fractals
, vol.35
, Issue.1
, pp. 85-98
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
16
-
-
0028406835
-
Traffic-flow dynamics: a search for chaos
-
Dendrinos D.S. Traffic-flow dynamics: a search for chaos. Chaos, Solitons & Fractals 4 4 (1994) 605-617
-
(1994)
Chaos, Solitons & Fractals
, vol.4
, Issue.4
, pp. 605-617
-
-
Dendrinos, D.S.1
-
20
-
-
67349086008
-
-
Shanghai Science and Technology Press, Shanghai [in Chinese]
-
Hao B.L. Chaos and fractals (2004), Shanghai Science and Technology Press, Shanghai [in Chinese]
-
(2004)
Chaos and fractals
-
-
Hao, B.L.1
-
22
-
-
0037916065
-
Dimensional analysis: some applications in human geography
-
Haynes A.H. Dimensional analysis: some applications in human geography. Geogr Anal 7 (1975) 51-68
-
(1975)
Geogr Anal
, vol.7
, pp. 51-68
-
-
Haynes, A.H.1
-
24
-
-
0344382072
-
Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework
-
Kwan M.P. Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geogr Anal 30 (1998) 191-216
-
(1998)
Geogr Anal
, vol.30
, pp. 191-216
-
-
Kwan, M.P.1
-
26
-
-
22344442292
-
Maximal operators and Fourier transforms of self-similar measures
-
Lin Y., and Ruan H.J. Maximal operators and Fourier transforms of self-similar measures. Chaos, Solitons & Fractals 27 1 (2006) 121-126
-
(2006)
Chaos, Solitons & Fractals
, vol.27
, Issue.1
, pp. 121-126
-
-
Lin, Y.1
Ruan, H.J.2
-
27
-
-
0029509937
-
Modelling urban growth patterns
-
Makse H.A., Havlin S., and Stanley H.E. Modelling urban growth patterns. Nature 377 (1995) 608-612
-
(1995)
Nature
, vol.377
, pp. 608-612
-
-
Makse, H.A.1
Havlin, S.2
Stanley, H.E.3
-
28
-
-
0001207042
-
Modeling urban growth patterns with correlated percolation
-
Makse H.A., Andrade Jr. J.S., Batty M., Havlin S., and Stanley H.E. Modeling urban growth patterns with correlated percolation. Phys Rev E 58 6 (1998) 7054-7062
-
(1998)
Phys Rev E
, vol.58
, Issue.6
, pp. 7054-7062
-
-
Makse, H.A.1
Andrade Jr., J.S.2
Batty, M.3
Havlin, S.4
Stanley, H.E.5
-
30
-
-
0003126994
-
Intermittency model for urban development
-
Manrubia S., and Zanette D. Intermittency model for urban development. Phys Rev E 58 1 (1998) 295-302
-
(1998)
Phys Rev E
, vol.58
, Issue.1
, pp. 295-302
-
-
Manrubia, S.1
Zanette, D.2
-
31
-
-
0000625604
-
Fractal functions and their applications
-
Massopust P.R. Fractal functions and their applications. Chaos, Solitons & Fractals 8 2 (1997) 171-190
-
(1997)
Chaos, Solitons & Fractals
, vol.8
, Issue.2
, pp. 171-190
-
-
Massopust, P.R.1
-
32
-
-
0033383378
-
The parameters of the gravity model are changing - how and why?
-
Mikkonen K., and Luoma M. The parameters of the gravity model are changing - how and why?. J Transport Geogr 7 (1999) 277-283
-
(1999)
J Transport Geogr
, vol.7
, pp. 277-283
-
-
Mikkonen, K.1
Luoma, M.2
-
33
-
-
84980125440
-
An economic derivation of the 'gravity law' of spatial interaction
-
Niedercorn J.H., and Bechdolt Jr. B.V. An economic derivation of the 'gravity law' of spatial interaction. J Regional Sci 9 (1969) 273-282
-
(1969)
J Regional Sci
, vol.9
, pp. 273-282
-
-
Niedercorn, J.H.1
Bechdolt Jr., B.V.2
-
34
-
-
0010066713
-
The inverse scattering transform: tools for the nonlinear fourier analysis and filtering of ocean surface waves
-
Osborne A.R. The inverse scattering transform: tools for the nonlinear fourier analysis and filtering of ocean surface waves. Chaos, Solitons & Fractals 5 12 (1995) 2623-2637
-
(1995)
Chaos, Solitons & Fractals
, vol.5
, Issue.12
, pp. 2623-2637
-
-
Osborne, A.R.1
-
35
-
-
0000705278
-
The development of social physics
-
Stewart J.Q. The development of social physics. Am J Phys 18 (1950) 239-253
-
(1950)
Am J Phys
, vol.18
, pp. 239-253
-
-
Stewart, J.Q.1
-
38
-
-
0025525032
-
Urban systems as examples of bounded chaos: exploring the relationship between fractal dimension, rank-size, and rural to urban migration
-
Wong D., and Fotheringham A.S. Urban systems as examples of bounded chaos: exploring the relationship between fractal dimension, rank-size, and rural to urban migration. Geogr Ann 72B (1990) 89-99
-
(1990)
Geogr Ann
, vol.72 B
, pp. 89-99
-
-
Wong, D.1
Fotheringham, A.S.2
-
39
-
-
0942299375
-
Fourier transform and mean quadratic variation of Bernoulli convolution on homogeneous Cantor set
-
Yu Z.G. Fourier transform and mean quadratic variation of Bernoulli convolution on homogeneous Cantor set. Chaos, Solitons & Fractals 21 1 (2004) 151-157
-
(2004)
Chaos, Solitons & Fractals
, vol.21
, Issue.1
, pp. 151-157
-
-
Yu, Z.G.1
-
40
-
-
0000709117
-
Role of intermittency in urban development: a model of large-scale city formation
-
Zanette D., and Manrubia S. Role of intermittency in urban development: a model of large-scale city formation. Phys Rev Lett 79 3 (1997) 523-526
-
(1997)
Phys Rev Lett
, vol.79
, Issue.3
, pp. 523-526
-
-
Zanette, D.1
Manrubia, S.2
-
41
-
-
0004165688
-
-
The Commercial Press, Beijing [in Chinese]
-
Zhou Y.X. Urban geography (1995), The Commercial Press, Beijing [in Chinese]
-
(1995)
Urban geography
-
-
Zhou, Y.X.1
|