-
1
-
-
0040202780
-
-
Kluwer Academic Publishers Group, Dordrecht
-
Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Mathematics and its Applications vol. 74 (1992), Kluwer Academic Publishers Group, Dordrecht
-
(1992)
Mathematics and its Applications
, vol.74
-
-
Gopalsamy, K.1
-
2
-
-
0022978309
-
Permanence in Lotka-Volterra equations linked prey-predator systems
-
Kirlinger G. Permanence in Lotka-Volterra equations linked prey-predator systems. Math. Biosci. 82 (1986) 165-169
-
(1986)
Math. Biosci.
, vol.82
, pp. 165-169
-
-
Kirlinger, G.1
-
3
-
-
31144435691
-
Attractivity of a positive periodic solution for all other positive solution in a delay population model
-
(in Chinese)
-
Li Y.K. Attractivity of a positive periodic solution for all other positive solution in a delay population model. Appl. Math. -JCU 12 3 (1997) 279-282 (in Chinese)
-
(1997)
Appl. Math. -JCU
, vol.12
, Issue.3
, pp. 279-282
-
-
Li, Y.K.1
-
4
-
-
0036866093
-
Positive periodic solutions for delay multispecies Logrithmic population model
-
(in Chinese)
-
Liu Z.J. Positive periodic solutions for delay multispecies Logrithmic population model. J. Eng. Math. 19 4 (2002) 11-16 (in Chinese)
-
(2002)
J. Eng. Math.
, vol.19
, Issue.4
, pp. 11-16
-
-
Liu, Z.J.1
-
5
-
-
33847418793
-
On existence of periodic solutions of Rayleigh equation of retarded type
-
Zhou Y.G., and Tang X.H. On existence of periodic solutions of Rayleigh equation of retarded type. J. Comput. Appl. Math. 203 (2007) 1-5
-
(2007)
J. Comput. Appl. Math.
, vol.203
, pp. 1-5
-
-
Zhou, Y.G.1
Tang, X.H.2
-
6
-
-
0035402840
-
On the existence of periodic solutions of a neutral delay model of single-species population growth
-
Fang H., and Li J.B. On the existence of periodic solutions of a neutral delay model of single-species population growth. J. Math. Anal. Appl. 259 (2001) 8-17
-
(2001)
J. Math. Anal. Appl.
, vol.259
, pp. 8-17
-
-
Fang, H.1
Li, J.B.2
-
7
-
-
0038556984
-
Sufficient conditions for the existence of positive periodic solutions of a class of neutral delays models
-
Yang Z.H., and Cao J.D. Sufficient conditions for the existence of positive periodic solutions of a class of neutral delays models. Appl. Math. Comput. 142 1 (2003) 123-142
-
(2003)
Appl. Math. Comput.
, vol.142
, Issue.1
, pp. 123-142
-
-
Yang, Z.H.1
Cao, J.D.2
-
8
-
-
0347758643
-
Positive periodic solutions of neutral Lotka-Volterra system with periodic delays
-
Yang Z.H., and Cao J.D. Positive periodic solutions of neutral Lotka-Volterra system with periodic delays. Appl. Math. Comput. 149 3 (2004) 661-687
-
(2004)
Appl. Math. Comput.
, vol.149
, Issue.3
, pp. 661-687
-
-
Yang, Z.H.1
Cao, J.D.2
-
9
-
-
0000512992
-
On a periodic neutral delay Lotka-Volterra system
-
Li Y.K. On a periodic neutral delay Lotka-Volterra system. Nonlinear Anal. 39 (2000) 767-778
-
(2000)
Nonlinear Anal.
, vol.39
, pp. 767-778
-
-
Li, Y.K.1
-
10
-
-
4544258197
-
Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control
-
Chen F.D., Lin F.X., and Chen X.X. Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control. Appl. Math. Comput. 158 1 (2004) 45-68
-
(2004)
Appl. Math. Comput.
, vol.158
, Issue.1
, pp. 45-68
-
-
Chen, F.D.1
Lin, F.X.2
Chen, X.X.3
-
11
-
-
12244274373
-
Positive periodic solutions of neutral Lotka-Volterra system with feedback control
-
Chen F.D. Positive periodic solutions of neutral Lotka-Volterra system with feedback control. Appl. Math. Comput. 162 3 (2005) 1279-1302
-
(2005)
Appl. Math. Comput.
, vol.162
, Issue.3
, pp. 1279-1302
-
-
Chen, F.D.1
-
12
-
-
0442291576
-
Positive periodic solutions of n-species neutral delay systems
-
Fang H. Positive periodic solutions of n-species neutral delay systems. Czech. Math. J. 53 3 (2003) 561-570
-
(2003)
Czech. Math. J.
, vol.53
, Issue.3
, pp. 561-570
-
-
Fang, H.1
-
13
-
-
2342595913
-
Positive periodic solution for a neutral delay competitive system
-
Liu Z.J. Positive periodic solution for a neutral delay competitive system. J. Math. Anal. Appl. 293 1 (2004) 181-189
-
(2004)
J. Math. Anal. Appl.
, vol.293
, Issue.1
, pp. 181-189
-
-
Liu, Z.J.1
-
14
-
-
3042702589
-
Periodic solutions for neutral nonlinear differential equations with functional delay
-
Raffoul Y.N. Periodic solutions for neutral nonlinear differential equations with functional delay. E.J.D.E. 2003 102 (2003) 1-7
-
(2003)
E.J.D.E.
, vol.2003
, Issue.102
, pp. 1-7
-
-
Raffoul, Y.N.1
-
15
-
-
0040061852
-
A simple stability criterion for linear neutral differential systems
-
Gopalsamy K. A simple stability criterion for linear neutral differential systems. Funkcial Ekvac. 28 (1985) 33-38
-
(1985)
Funkcial Ekvac.
, vol.28
, pp. 33-38
-
-
Gopalsamy, K.1
-
16
-
-
15344339087
-
Existence of positive periodic solutions of a neutral delay Loka-Volterra systems with impulses
-
Huo H. Existence of positive periodic solutions of a neutral delay Loka-Volterra systems with impulses. Comput. Math. Appl. 48 (2004) 1833-1846
-
(2004)
Comput. Math. Appl.
, vol.48
, pp. 1833-1846
-
-
Huo, H.1
-
17
-
-
33750036700
-
Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition systems with the effect of toxic substance
-
Xia Y. Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition systems with the effect of toxic substance. Nonlinear Anal.: RWA 8 (2007) 204-221
-
(2007)
Nonlinear Anal.: RWA
, vol.8
, pp. 204-221
-
-
Xia, Y.1
-
18
-
-
53949114457
-
Existence of positive periodic solutions for neutral population model with delays and impulse
-
Wang Q., and Dai B. Existence of positive periodic solutions for neutral population model with delays and impulse. Nonlinear Anal.: TMA 69 (2008) 3919-3930
-
(2008)
Nonlinear Anal.: TMA
, vol.69
, pp. 3919-3930
-
-
Wang, Q.1
Dai, B.2
-
19
-
-
31144460688
-
Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model
-
Chen F.D. Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model. Appl. Math. Comput. 171 (2005) 760-770
-
(2005)
Appl. Math. Comput.
, vol.171
, pp. 760-770
-
-
Chen, F.D.1
-
20
-
-
14744282694
-
On a periodic neutral delay logarithmic population model
-
(in Chinese)
-
Li Y.K. On a periodic neutral delay logarithmic population model. J. Syst. Sci. Math. Sci. 19 1 (1999) 34-38 (in Chinese)
-
(1999)
J. Syst. Sci. Math. Sci.
, vol.19
, Issue.1
, pp. 34-38
-
-
Li, Y.K.1
-
21
-
-
1542634984
-
Existence of positive periodic solutions for neutral logarithmic population model with multiple delays
-
Lu S.P., and Ge W.G. Existence of positive periodic solutions for neutral logarithmic population model with multiple delays. J. Comput. Appl. Math. 166 2 (2004) 371-383
-
(2004)
J. Comput. Appl. Math.
, vol.166
, Issue.2
, pp. 371-383
-
-
Lu, S.P.1
Ge, W.G.2
-
22
-
-
33646366399
-
Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model
-
Chen F.D. Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model. Appl. Math. Comput. 176 (2006) 431-441
-
(2006)
Appl. Math. Comput.
, vol.176
, pp. 431-441
-
-
Chen, F.D.1
-
23
-
-
0003451932
-
-
Springer-Verlag, Berlin
-
R.E. Gaines, J.L. Mawhin, in: Lectures Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, 1977.
-
(1977)
Lectures Notes in Mathematics
, vol.568
-
-
Gaines, R.E.1
Mawhin, J.L.2
-
24
-
-
0031384747
-
Existence theorem for periodic solutions of higher order nonlinear differential equations
-
Liu Z.D., and Mao Y.P. Existence theorem for periodic solutions of higher order nonlinear differential equations. J. Math. Anal. Appl. 216 (1997) 481-490
-
(1997)
J. Math. Anal. Appl.
, vol.216
, pp. 481-490
-
-
Liu, Z.D.1
Mao, Y.P.2
-
25
-
-
2942566542
-
Existence of positive periodic solutions for neutral population model with multiple delays
-
Lu S.P., and Ge W.G. Existence of positive periodic solutions for neutral population model with multiple delays. Appl. Math. Comput. 153 (2004) 885-902
-
(2004)
Appl. Math. Comput.
, vol.153
, pp. 885-902
-
-
Lu, S.P.1
Ge, W.G.2
-
26
-
-
24944476496
-
The permanence and global attractivity of Lotka-Volterra competition system with feedback controls
-
Chen F.D. The permanence and global attractivity of Lotka-Volterra competition system with feedback controls. Nonlinear Anal.: Real World Appl. 7 (2006) 133-143
-
(2006)
Nonlinear Anal.: Real World Appl.
, vol.7
, pp. 133-143
-
-
Chen, F.D.1
-
27
-
-
33646130419
-
Average conditions for permanence and extinction in nonautonomous Gilpin-Ayala competition model
-
Chen F.D. Average conditions for permanence and extinction in nonautonomous Gilpin-Ayala competition model. Nonlinear Anal.: Real World Appl. 7 (2006) 895-915
-
(2006)
Nonlinear Anal.: Real World Appl.
, vol.7
, pp. 895-915
-
-
Chen, F.D.1
-
28
-
-
17644427702
-
On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay
-
Chen F.D. On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180 (2005) 33-49
-
(2005)
J. Comput. Appl. Math.
, vol.180
, pp. 33-49
-
-
Chen, F.D.1
-
29
-
-
63449091477
-
Multiple periodic solutions of an impulsive predator-prey model with Holling IV functional response
-
10.1016/j.mcm.2008.09.008
-
Wang Q., Dai B., and Chen Y. Multiple periodic solutions of an impulsive predator-prey model with Holling IV functional response. Math. Comput. Model. (2008) 10.1016/j.mcm.2008.09.008
-
(2008)
Math. Comput. Model.
-
-
Wang, Q.1
Dai, B.2
Chen, Y.3
|