-
1
-
-
0042592966
-
Chaos theory in geophysics: past, present and future
-
Sivakumar S. Chaos theory in geophysics: past, present and future. Chaos, Solitons & Fractals 19 (2004) 441-462
-
(2004)
Chaos, Solitons & Fractals
, vol.19
, pp. 441-462
-
-
Sivakumar, S.1
-
3
-
-
0024218570
-
The weather attractor over very short timescales
-
Tsonis A.A., and Elsner J.B. The weather attractor over very short timescales. Nature 333 (1988) 545-547
-
(1988)
Nature
, vol.333
, pp. 545-547
-
-
Tsonis, A.A.1
Elsner, J.B.2
-
4
-
-
40749093037
-
Measuring the strangeness attractors
-
Grassberger P., and Procaccia I. Measuring the strangeness attractors. Physica D 9 (1983) 189-208
-
(1983)
Physica D
, vol.9
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
5
-
-
38249002680
-
What does a low-dimensional weather attractor mean?
-
Zeng X., and Pielke R.A. What does a low-dimensional weather attractor mean?. Phys Lett A 175 (1993) 299-304
-
(1993)
Phys Lett A
, vol.175
, pp. 299-304
-
-
Zeng, X.1
Pielke, R.A.2
-
6
-
-
0027444085
-
A possible explanation for low correlation dimension estimates for the atmosphere
-
Islam S., Bras R.L., and Rodriguez-Iturbe I. A possible explanation for low correlation dimension estimates for the atmosphere. J Clim Appl Meteorol 48 (1993) 203-208
-
(1993)
J Clim Appl Meteorol
, vol.48
, pp. 203-208
-
-
Islam, S.1
Bras, R.L.2
Rodriguez-Iturbe, I.3
-
7
-
-
0021174212
-
Harmonic analysis of climatic data
-
Phillips W. Harmonic analysis of climatic data. Sol Energy 32 (1984) 319-328
-
(1984)
Sol Energy
, vol.32
, pp. 319-328
-
-
Phillips, W.1
-
8
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Dynamical systems and turbulence. Rand D.A., and Young L.S. (Eds), Springer, Berlin
-
Takens F. Detecting strange attractors in turbulence. In: Rand D.A., and Young L.S. (Eds). Dynamical systems and turbulence. Lecture notes in mathematics vol. 898 (1981), Springer, Berlin 366-381
-
(1981)
Lecture notes in mathematics
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
9
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
Frazer A.M., and Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys Rev A 33 2 (1986) 1134-1140
-
(1986)
Phys Rev A
, vol.33
, Issue.2
, pp. 1134-1140
-
-
Frazer, A.M.1
Swinney, H.L.2
-
10
-
-
0034737012
-
Chaos theory in hydrology: important issues and interpretations
-
Sivakumar B. Chaos theory in hydrology: important issues and interpretations. J Hydrol 227 (2000) 1-20
-
(2000)
J Hydrol
, vol.227
, pp. 1-20
-
-
Sivakumar, B.1
-
11
-
-
0000062618
-
Chaotic time series Part I: estimation of some invariant properties in state space
-
Kugiumtzis D., Lillekjendlie B., and Christophersen N. Chaotic time series Part I: estimation of some invariant properties in state space. Model Ident Control 15 4 (1994) 205-224
-
(1994)
Model Ident Control
, vol.15
, Issue.4
, pp. 205-224
-
-
Kugiumtzis, D.1
Lillekjendlie, B.2
Christophersen, N.3
-
12
-
-
35949006791
-
Determining embedding dimension for phase-space reconstruction using a geometrical construction
-
Kennel M., Brown R., and Abarbanel H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45 (1992) 3403-3411
-
(1992)
Phys Rev A
, vol.45
, pp. 3403-3411
-
-
Kennel, M.1
Brown, R.2
Abarbanel, H.D.I.3
-
13
-
-
84975613293
-
Estimating fractal dimension
-
Theiler J. Estimating fractal dimension. Opt Soc Am A 7 (1990) 1055-1073
-
(1990)
Opt Soc Am A
, vol.7
, pp. 1055-1073
-
-
Theiler, J.1
-
14
-
-
0000810560
-
Practical implementation of nonlinear time series methods: the TISEAN package
-
Schreiber T., Kantz H., and Hegger R. Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9 (1999) 413-435
-
(1999)
Chaos
, vol.9
, pp. 413-435
-
-
Schreiber, T.1
Kantz, H.2
Hegger, R.3
-
15
-
-
0034642947
-
Noise reduction and prediction of hydrometeorogical time series: dynamical systems approach vs Stochastic approach
-
Jayawardena A., and Gurung A. Noise reduction and prediction of hydrometeorogical time series: dynamical systems approach vs Stochastic approach. J Hydrol 228 (2000) 242-263
-
(2000)
J Hydrol
, vol.228
, pp. 242-263
-
-
Jayawardena, A.1
Gurung, A.2
-
16
-
-
0001391710
-
Noise reduction in chaotic time-series data: a survey of common methods
-
Kostelich E., and Schreiber T. Noise reduction in chaotic time-series data: a survey of common methods. Phys Rev E 48 (1993) 1752-1763
-
(1993)
Phys Rev E
, vol.48
, pp. 1752-1763
-
-
Kostelich, E.1
Schreiber, T.2
-
17
-
-
67349171208
-
Noise: A short simplified review on local estimation and reduction
-
University of Patras, Patras, Greece; 19-30 August
-
Leontitsis A, Bountis T, Pange J. Noise: a short simplified review on local estimation and reduction. Presentation for the 15th summer school/ panhellenic conference, non-linear dynamics: chaos and complexity, University of Patras, Patras, Greece; 19-30 August 2002.
-
(2002)
Presentation for the 15th summer school/ panhellenic conference, non-linear dynamics: Chaos and complexity
-
-
Leontitsis, A.1
Bountis, T.2
Pange, J.3
-
18
-
-
0001373630
-
Extremely simple nonlinear noise reduction method
-
Schreiber T. Extremely simple nonlinear noise reduction method. Phys Rev E 47 (1993) 2401-2404
-
(1993)
Phys Rev E
, vol.47
, pp. 2401-2404
-
-
Schreiber, T.1
-
19
-
-
0000303832
-
Noise in chaotic data: diagnosis and treatment
-
Schreiber T., and Kantz H. Noise in chaotic data: diagnosis and treatment. Chaos 5 (1995) 133-142
-
(1995)
Chaos
, vol.5
, pp. 133-142
-
-
Schreiber, T.1
Kantz, H.2
-
20
-
-
0011702684
-
Effective noise of the Lorenz attractor
-
Nicolis C., and Nicolis G. Effective noise of the Lorenz attractor. Phys Rev A 34 (1986) 2384-2390
-
(1986)
Phys Rev A
, vol.34
, pp. 2384-2390
-
-
Nicolis, C.1
Nicolis, G.2
-
21
-
-
0000097854
-
A simple noise reduction method for real data
-
Schreiber T., and Grassberger P. A simple noise reduction method for real data. Phys Lett A 160 (1991) 411-418
-
(1991)
Phys Lett A
, vol.160
, pp. 411-418
-
-
Schreiber, T.1
Grassberger, P.2
-
22
-
-
4444356674
-
Noise reduction in chaotic time series by local projection with nonlinear constraints
-
Krzysztof U., et al. Noise reduction in chaotic time series by local projection with nonlinear constraints. Acta Phys Pol B 35 (2004) 2175-2197
-
(2004)
Acta Phys Pol B
, vol.35
, pp. 2175-2197
-
-
Krzysztof, U.1
-
23
-
-
67349233210
-
Statistical analysis for long term correlations in the stress time series of jerky flow
-
Kugiumtzis D., and Aifantis C. Statistical analysis for long term correlations in the stress time series of jerky flow. J Mech Behav Mater 15 (2004) 135-147
-
(2004)
J Mech Behav Mater
, vol.15
, pp. 135-147
-
-
Kugiumtzis, D.1
Aifantis, C.2
-
24
-
-
6144236430
-
Improved surrogate data for nonlinearity tests
-
Schreiber T., and Schmitz A. Improved surrogate data for nonlinearity tests. Phys Rev Lett 77 (1996) 635
-
(1996)
Phys Rev Lett
, vol.77
, pp. 635
-
-
Schreiber, T.1
Schmitz, A.2
-
25
-
-
0001517970
-
False-nearest-neighbors algorithm and noise-corrupted time series
-
Rhodes C., and Morari M. False-nearest-neighbors algorithm and noise-corrupted time series. Phys Rev 55 (1997) 6162
-
(1997)
Phys Rev
, vol.55
, pp. 6162
-
-
Rhodes, C.1
Morari, M.2
|