-
1
-
-
0022178811
-
Fractals take a central place
-
Arlinghaus S.L. Fractals take a central place. Geogr Ann B 67 2 (1985) 83-88
-
(1985)
Geogr Ann B
, vol.67
, Issue.2
, pp. 83-88
-
-
Arlinghaus, S.L.1
-
2
-
-
0024484015
-
The fractal theory of central place geometry: a Diophantine analysis of fractal generators for arbitrary Löschian numbers
-
Arlinghaus S.L., and Arlinghaus W.C. The fractal theory of central place geometry: a Diophantine analysis of fractal generators for arbitrary Löschian numbers. Geogr Anal 21 (1989) 103-121
-
(1989)
Geogr Anal
, vol.21
, pp. 103-121
-
-
Arlinghaus, S.L.1
Arlinghaus, W.C.2
-
3
-
-
0001543407
-
Fractals: new ways of looking at cities
-
Batty M. Fractals: new ways of looking at cities. Nature 377 (1995) 574
-
(1995)
Nature
, vol.377
, pp. 574
-
-
Batty, M.1
-
4
-
-
0024850170
-
Urban growth and form: scaling, fractal geometry and diffusion-limited aggregation
-
Batty M., Fotheringham A.S., and Longley P.A. Urban growth and form: scaling, fractal geometry and diffusion-limited aggregation. Environ Plan A 21 (1989) 1447-1472
-
(1989)
Environ Plan A
, vol.21
, pp. 1447-1472
-
-
Batty, M.1
Fotheringham, A.S.2
Longley, P.A.3
-
6
-
-
0027040557
-
Form follows function: reformulating urban population density functions
-
Batty M., and Kim S.K. Form follows function: reformulating urban population density functions. Urban Stud 29 7 (1992) 1043-1070
-
(1992)
Urban Stud
, vol.29
, Issue.7
, pp. 1043-1070
-
-
Batty, M.1
Kim, S.K.2
-
7
-
-
84881771140
-
City hierarchies and distribution of city sizes
-
Beckmann M.J. City hierarchies and distribution of city sizes. Econ Develop Cult Change 6 3 (1958) 243-248
-
(1958)
Econ Develop Cult Change
, vol.6
, Issue.3
, pp. 243-248
-
-
Beckmann, M.J.1
-
8
-
-
0033942438
-
When and where is a city fractal?
-
Benguigui L., Czamanski D., Marinov M., and Portugali J. When and where is a city fractal?. Environ Plan B: Plan Des 27 4 (2000) 507-519
-
(2000)
Environ Plan B: Plan Des
, vol.27
, Issue.4
, pp. 507-519
-
-
Benguigui, L.1
Czamanski, D.2
Marinov, M.3
Portugali, J.4
-
9
-
-
0003445619
-
-
George Braziller, Inc, New York
-
von Bertalanffy L. General system theory: foundations, development, and applications (1968), George Braziller, Inc, New York
-
(1968)
General system theory: foundations, development, and applications
-
-
von Bertalanffy, L.1
-
10
-
-
34347188564
-
Cities as systems within systems of cities
-
Berry B.J.L. Cities as systems within systems of cities. Pap Reg Sci 13 1 (1964) 146-163
-
(1964)
Pap Reg Sci
, vol.13
, Issue.1
, pp. 146-163
-
-
Berry, B.J.L.1
-
12
-
-
0347022689
-
The rank-size rule and fractal hierarchies of cities: mathematical models and empirical analyses
-
Chen Y.G., and Zhou Y.X. The rank-size rule and fractal hierarchies of cities: mathematical models and empirical analyses. Environ Plan B: Plan Des 30 6 (2003) 799-818
-
(2003)
Environ Plan B: Plan Des
, vol.30
, Issue.6
, pp. 799-818
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
13
-
-
2442563863
-
Multi-fractal measures of city-size distributions based on the three-parameter Zipf model
-
Chen Y.G., and Zhou Y.X. Multi-fractal measures of city-size distributions based on the three-parameter Zipf model. Chaos, Solitons & Fractals 22 4 (2004) 793-805
-
(2004)
Chaos, Solitons & Fractals
, vol.22
, Issue.4
, pp. 793-805
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
14
-
-
33745124368
-
Reinterpreting central place networks using ideas from fractals and self-organized criticality
-
Chen Y.G., and Zhou Y.X. Reinterpreting central place networks using ideas from fractals and self-organized criticality. Environ Plan B: Plan Des 33 3 (2006) 345-364
-
(2006)
Environ Plan B: Plan Des
, vol.33
, Issue.3
, pp. 345-364
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
15
-
-
34548534433
-
Scaling laws and indications of self-organized criticality in urban systems
-
Chen Y.G., and Zhou Y.X. Scaling laws and indications of self-organized criticality in urban systems. Chaos, Solitons & Fractals 35 1 (2008) 85-98
-
(2008)
Chaos, Solitons & Fractals
, vol.35
, Issue.1
, pp. 85-98
-
-
Chen, Y.G.1
Zhou, Y.X.2
-
16
-
-
0242541666
-
Using fractal dimensions for characterizing intra-urban diversity: the example of Brussels
-
De Keersmaecker M.-L., Frankhauser P., and Thomas I. Using fractal dimensions for characterizing intra-urban diversity: the example of Brussels. Geogr Anal 35 4 (2003) 310-328
-
(2003)
Geogr Anal
, vol.35
, Issue.4
, pp. 310-328
-
-
De Keersmaecker, M.-L.1
Frankhauser, P.2
Thomas, I.3
-
17
-
-
43949153647
-
Nonlinear dynamics in urban and transportation analysis
-
Dendrinos DS, El Naschie MS, editors
-
Dendrinos DS, El Naschie MS, editors. Nonlinear dynamics in urban and transportation analysis. Chaos, Soliton & Fractals 1994; 4: 497-617 [special issue].
-
(1994)
Chaos, Soliton & Fractals
, vol.4
, Issue.SPEC. ISSUE
, pp. 497-617
-
-
-
18
-
-
0042822370
-
Spatial-temporal evolution of urban morphology and land use structure in Hangzhou
-
[in Chinese]
-
Feng J. Spatial-temporal evolution of urban morphology and land use structure in Hangzhou. Acta Geogr Sin 58 3 (2003) 343-353 [in Chinese]
-
(2003)
Acta Geogr Sin
, vol.58
, Issue.3
, pp. 343-353
-
-
Feng, J.1
-
19
-
-
0024918787
-
Diffusion-limited aggregation and the fractal nature of urban growth
-
Fotheringham A.S., Batty M., and Longley P.A. Diffusion-limited aggregation and the fractal nature of urban growth. Pap Reg Sci 67 1 (1989) 55-69
-
(1989)
Pap Reg Sci
, vol.67
, Issue.1
, pp. 55-69
-
-
Fotheringham, A.S.1
Batty, M.2
Longley, P.A.3
-
21
-
-
0013966054
-
Allometry and size in ontogeny and phylogeny
-
Gould S.J. Allometry and size in ontogeny and phylogeny. Biol Rev 41 4 (1966) 587-640
-
(1966)
Biol Rev
, vol.41
, Issue.4
, pp. 587-640
-
-
Gould, S.J.1
-
22
-
-
62449094822
-
The fractal urban form of Beijing and its practical significance
-
[in Chinese]
-
Jiang S.G., and Zhou Y.X. The fractal urban form of Beijing and its practical significance. Geogr Res 25 2 (2006) 204-212 [in Chinese]
-
(2006)
Geogr Res
, vol.25
, Issue.2
, pp. 204-212
-
-
Jiang, S.G.1
Zhou, Y.X.2
-
26
-
-
0024473972
-
An allometric analysis of the US urban system: 1960-80
-
Lee Y. An allometric analysis of the US urban system: 1960-80. Environ Plan A 21 4 (1989) 463-476
-
(1989)
Environ Plan A
, vol.21
, Issue.4
, pp. 463-476
-
-
Lee, Y.1
-
28
-
-
0037332790
-
Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure
-
Matsuba I., and Namatame M. Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure. Chaos, Solitons & Fractals 16 1 (2003) 151-165
-
(2003)
Chaos, Solitons & Fractals
, vol.16
, Issue.1
, pp. 151-165
-
-
Matsuba, I.1
Namatame, M.2
-
29
-
-
6244246704
-
The principle of allometry in biology and social sciences
-
Naroll R.S., and von Bertalanffy L. The principle of allometry in biology and social sciences. Gen Syst Yearbook 1 (1956) 76-89
-
(1956)
Gen Syst Yearbook
, vol.1
, pp. 76-89
-
-
Naroll, R.S.1
von Bertalanffy, L.2
-
30
-
-
12444252714
-
Road development in urban area
-
Smeed R.J. Road development in urban area. J Inst Highw Eng 10 (1963) 5-30
-
(1963)
J Inst Highw Eng
, vol.10
, pp. 5-30
-
-
Smeed, R.J.1
-
31
-
-
0000565591
-
A computer movie simulating urban growth in the Detroit region
-
Tobler W. A computer movie simulating urban growth in the Detroit region. Econ Geogr 46 2 (1970) 234-240
-
(1970)
Econ Geogr
, vol.46
, Issue.2
, pp. 234-240
-
-
Tobler, W.1
-
33
-
-
0027714248
-
Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns
-
White R., and Engelen G. Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environ Plan A 25 8 (1993) 1175-1199
-
(1993)
Environ Plan A
, vol.25
, Issue.8
, pp. 1175-1199
-
-
White, R.1
Engelen, G.2
-
34
-
-
0028665510
-
Urban systems dynamics and cellular automata: fractal structures between order and chaos
-
White R., and Engelen G. Urban systems dynamics and cellular automata: fractal structures between order and chaos. Chaos, Solitons & Fractals 4 4 (1994) 563-583
-
(1994)
Chaos, Solitons & Fractals
, vol.4
, Issue.4
, pp. 563-583
-
-
White, R.1
Engelen, G.2
|