메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1400-1405

Background subtraction based on a combination of texture, color and intensity

Author keywords

[No Author keywords available]

Indexed keywords

BACKGROUND SUBTRACTION; BACKGROUND SUBTRACTION ALGORITHMS; CAST SHADOW; COLOR SPACE; COMPARATIVE EXPERIMENTS; INTENSITY INFORMATION; PIXEL INTENSITIES; TEXTURE AREA;

EID: 67249125050     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICOSP.2008.4697394     Document Type: Conference Paper
Times cited : (20)

References (13)
  • 1
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive Background Mixture Models for Real-time Tracking. IEEE CS Conf
    • June
    • C. Stauffer and W. Grimson. Adaptive Background Mixture Models for Real-time Tracking. IEEE CS Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 23-25, June 1999.
    • (1999) Computer Vision and Pattern Recognition , vol.2 , pp. 23-25
    • Stauffer, C.1    Grimson, W.2
  • 3
    • 33645307063 scopus 로고    scopus 로고
    • Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance
    • A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proc. IEEE, vol. 90, no. 7, pp. 1151-1163, 2002.
    • (2002) Proc. IEEE , vol.90 , Issue.7 , pp. 1151-1163
    • Elgammal, A.1    Duraiswami, R.2    Harwood, D.3    Davis, L.S.4
  • 9
    • 33144466752 scopus 로고    scopus 로고
    • A texture-based method for modeling the background and detecting moving objects
    • April
    • M. Heikkila and M. Pietikainen. A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, pp. 657-662, April 2006.
    • (2006) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.28 , pp. 657-662
    • Heikkila, M.1    Pietikainen, M.2
  • 11
    • 0000295034 scopus 로고
    • Non-Parameterized Bayesian Decision Method for Moving Object Detection
    • Singapore
    • H. Nakai. Non-Parameterized Bayesian Decision Method for Moving Object Detection. Proc. Asian Conf. Computer Vision. 1995. Singapore.
    • (1995) Proc. Asian Conf. Computer Vision
    • Nakai, H.1
  • 12
    • 0004737754 scopus 로고    scopus 로고
    • A Bayesian Computer Vision System for Modeling Human Interactions
    • Gran Canaria, Spain: Springer
    • N. Oliver, B. Rosario, and A. Pentland. A Bayesian Computer Vision System for Modeling Human Interactions. Proc. Int'l Conf. on Vision Systems. 1999. Gran Canaria, Spain: Springer.
    • (1999) Proc. Int'l Conf. on Vision Systems
    • Oliver, N.1    Rosario, B.2    Pentland, A.3
  • 13
    • 38849108290 scopus 로고    scopus 로고
    • Background Subtraction Using Generalised Gaussian Family Model
    • Jan
    • H. Kim, R. Sakamoto, I. Kitahara, T. Toriyama and K. Kogure. Background Subtraction Using Generalised Gaussian Family Model. IEEE Electronics Letters. Vol. 44, no. 3, pp. 189-190, Jan. 2008.
    • (2008) IEEE Electronics Letters , vol.44 , Issue.3 , pp. 189-190
    • Kim, H.1    Sakamoto, R.2    Kitahara, I.3    Toriyama, T.4    Kogure, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.