메뉴 건너뛰기




Volumn 79, Issue 5, 2009, Pages

Correlation effects on the temperature-relaxation rates in dense plasmas

Author keywords

[No Author keywords available]

Indexed keywords

CORRELATION EFFECT; DENSE HYDROGEN; DENSE PLASMA; DIFFRACTION EFFECTS; ELECTRON DEGENERACY; ELECTRON IONS; MOLECULAR DYNAMICS SIMULATIONS; PLASMA COUPLING; RELAXATION RATES; TEMPERATURE RELAXATION;

EID: 67149123796     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.79.056403     Document Type: Article
Times cited : (75)

References (34)
  • 2
    • 36749117442 scopus 로고
    • 10.1063/1.1694739
    • G. S. Fraley, Phys. Fluids 17, 474 (1974). 10.1063/1.1694739
    • (1974) Phys. Fluids , vol.17 , pp. 474
    • Fraley, G.S.1
  • 3
    • 36149056125 scopus 로고
    • 10.1088/0032-1028/17/6/007
    • H. Brysk, Plasma Phys. 17, 473 (1975). 10.1088/0032-1028/17/6/007
    • (1975) Plasma Phys. , vol.17 , pp. 473
    • Brysk, H.1
  • 4
    • 0021422248 scopus 로고
    • 10.1063/1.864744
    • Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984). 10.1063/1.864744
    • (1984) Phys. Fluids , vol.27 , pp. 1273
    • Lee, Y.T.1    More, R.M.2
  • 8
    • 52949098021 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.101.135001
    • G. Dimonte and J. Daligault, Phys. Rev. Lett. 101, 135001 (2008). 10.1103/PhysRevLett.101.135001
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 135001
    • Dimonte, G.1    Daligault, J.2
  • 15
    • 22544446781 scopus 로고    scopus 로고
    • 10.1088/1742-6596/11/1/011
    • D. O. Gericke, J. Phys.: Conf. Ser. 11, 111 (2005). 10.1088/1742-6596/11/ 1/011
    • (2005) J. Phys.: Conf. Ser. , vol.11 , pp. 111
    • Gericke, D.O.1
  • 17
    • 67149128095 scopus 로고    scopus 로고
    • The e-i interaction potential can be modeled with the bare Coulomb interaction vie (k) =4πZ Ze e2 / k2 or with a pseudopotential when a nucleus and its tightly bound electrons behave as a rigid entity.
    • The e-i interaction potential can be modeled with the bare Coulomb interaction vie (k) =4πZ Ze e2 / k2 or with a pseudopotential when a nucleus and its tightly bound electrons behave as a rigid entity.
  • 18
    • 9644275656 scopus 로고
    • 10.1103/PhysRevA.15.744
    • S. Ichimaru, Phys. Rev. A 15, 744 (1977). 10.1103/PhysRevA.15.744
    • (1977) Phys. Rev. A , vol.15 , pp. 744
    • Ichimaru, S.1
  • 19
    • 67149085935 scopus 로고    scopus 로고
    • When electrons are treated quantum mechanically, the quantum expression for S ii 0 is used in order to satisfy detailed balance and ultimately energy conservation.
    • When electrons are treated quantum mechanically, the quantum expression for S ii 0 is used in order to satisfy detailed balance and ultimately energy conservation.
  • 21
    • 0000536391 scopus 로고
    • 10.1103/PhysRevA.32.1790
    • S. Ichimaru and S. Tanaka, Phys. Rev. A 32, 1790 (1985). 10.1103/PhysRevA.32.1790
    • (1985) Phys. Rev. A , vol.32 , pp. 1790
    • Ichimaru, S.1    Tanaka, S.2
  • 22
    • 0000186647 scopus 로고
    • 10.1103/PhysRevA.23.1969;
    • D. B. Boercker, Phys. Rev. A 23, 1969 (1981) 10.1103/PhysRevA.23.1969
    • (1981) Phys. Rev. A , vol.23 , pp. 1969
    • Boercker, D.B.1
  • 24
    • 84976870425 scopus 로고
    • 10.1002/andp.19303970303
    • H. Bethe, Ann. Phys. 397, 325 (1930). 10.1002/andp.19303970303
    • (1930) Ann. Phys. , vol.397 , pp. 325
    • Bethe, H.1
  • 25
    • 67149141470 scopus 로고    scopus 로고
    • Here we describe calculations obtained using the HNC equations with Te = Ti. Results with Te Ti were not significantly different.
    • Here we describe calculations obtained using the HNC equations with Te = Ti. Results with Te Ti were not significantly different.
  • 27
    • 67149125337 scopus 로고    scopus 로고
    • We use e (k) 1-4π e2 Re χe0 (k,0) / k2 1+ k TF 2 / k2, where kTF = [-4π e2 Re χe0 (0,0)] 1/2 =4 kF Θ I 1/2 ′ (η) /π aB is the finite temperature Thomas-Fermi screening length [here I1/2 is the usual Fermi function so that ne = I1/2 (η) /2 π2 3 (2 me kB Te) 3/2].
    • We use e (k) 1-4π e2 Re χe0 (k,0) / k2 1+ k TF 2 / k2, where kTF = [-4π e2 Re χe0 (0,0)] 1/2 =4 kF Θ I 1/2 ′ (η) /π aB is the finite temperature Thomas-Fermi screening length [here I1/2 is the usual Fermi function so that ne = I1/2 (η) /2 π2 3 (2 me kB Te) 3/2].
  • 28
    • 0011188612 scopus 로고
    • 10.1103/PhysRevA.33.2575
    • J. Chihara, Phys. Rev. A 33, 2575 (1986). 10.1103/PhysRevA.33.2575
    • (1986) Phys. Rev. A , vol.33 , pp. 2575
    • Chihara, J.1
  • 31
    • 0035441961 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.64.035401
    • M. W. C. Dharma-wardana, Phys. Rev. E 64, 035401 (R) (2001). 10.1103/PhysRevE.64.035401
    • (2001) Phys. Rev. e , vol.64 , pp. 035401
    • Dharma-Wardana, M.W.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.