-
2
-
-
36749117442
-
-
10.1063/1.1694739
-
G. S. Fraley, Phys. Fluids 17, 474 (1974). 10.1063/1.1694739
-
(1974)
Phys. Fluids
, vol.17
, pp. 474
-
-
Fraley, G.S.1
-
3
-
-
36149056125
-
-
10.1088/0032-1028/17/6/007
-
H. Brysk, Plasma Phys. 17, 473 (1975). 10.1088/0032-1028/17/6/007
-
(1975)
Plasma Phys.
, vol.17
, pp. 473
-
-
Brysk, H.1
-
5
-
-
50149102998
-
-
10.1103/PhysRevE.78.025401
-
J. N. Glosli, F. R. Graziani, R. M. More, M. S. Murillo, F. H. Streitz, M. P. Surh, L. X. Benedict, S. Hau-Riege, A. B. Langdon, and R. A. London, Phys. Rev. E 78, 025401 (R) (2008). 10.1103/PhysRevE.78.025401
-
(2008)
Phys. Rev. e
, vol.78
, pp. 025401
-
-
Glosli, J.N.1
Graziani, F.R.2
More, R.M.3
Murillo, M.S.4
Streitz, F.H.5
Surh, M.P.6
Benedict, L.X.7
Hau-Riege, S.8
Langdon, A.B.9
London, R.A.10
-
6
-
-
52249113758
-
-
10.1103/PhysRevE.78.036403
-
B. Jeon, M. Foster, J. Colgan, G. Csanak, J. D. Kress, L. A. Collins, and N. Gronbech-Jensen, Phys. Rev. E 78, 036403 (2008). 10.1103/PhysRevE.78.036403
-
(2008)
Phys. Rev. e
, vol.78
, pp. 036403
-
-
Jeon, B.1
Foster, M.2
Colgan, J.3
Csanak, G.4
Kress, J.D.5
Collins, L.A.6
Gronbech-Jensen, N.7
-
8
-
-
52949098021
-
-
10.1103/PhysRevLett.101.135001
-
G. Dimonte and J. Daligault, Phys. Rev. Lett. 101, 135001 (2008). 10.1103/PhysRevLett.101.135001
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 135001
-
-
Dimonte, G.1
Daligault, J.2
-
13
-
-
0039034576
-
-
10.1103/PhysRevE.64.066411
-
G. Hazak, Z. Zinamon, Y. Rosenfeld, and M. W. C. Dharma-wardana, Phys. Rev. E 64, 066411 (2001). 10.1103/PhysRevE.64.066411
-
(2001)
Phys. Rev. e
, vol.64
, pp. 066411
-
-
Hazak, G.1
Zinamon, Z.2
Rosenfeld, Y.3
Dharma-Wardana, M.W.C.4
-
15
-
-
22544446781
-
-
10.1088/1742-6596/11/1/011
-
D. O. Gericke, J. Phys.: Conf. Ser. 11, 111 (2005). 10.1088/1742-6596/11/ 1/011
-
(2005)
J. Phys.: Conf. Ser.
, vol.11
, pp. 111
-
-
Gericke, D.O.1
-
17
-
-
67149128095
-
-
The e-i interaction potential can be modeled with the bare Coulomb interaction vie (k) =4πZ Ze e2 / k2 or with a pseudopotential when a nucleus and its tightly bound electrons behave as a rigid entity.
-
The e-i interaction potential can be modeled with the bare Coulomb interaction vie (k) =4πZ Ze e2 / k2 or with a pseudopotential when a nucleus and its tightly bound electrons behave as a rigid entity.
-
-
-
-
18
-
-
9644275656
-
-
10.1103/PhysRevA.15.744
-
S. Ichimaru, Phys. Rev. A 15, 744 (1977). 10.1103/PhysRevA.15.744
-
(1977)
Phys. Rev. A
, vol.15
, pp. 744
-
-
Ichimaru, S.1
-
19
-
-
67149085935
-
-
When electrons are treated quantum mechanically, the quantum expression for S ii 0 is used in order to satisfy detailed balance and ultimately energy conservation.
-
When electrons are treated quantum mechanically, the quantum expression for S ii 0 is used in order to satisfy detailed balance and ultimately energy conservation.
-
-
-
-
21
-
-
0000536391
-
-
10.1103/PhysRevA.32.1790
-
S. Ichimaru and S. Tanaka, Phys. Rev. A 32, 1790 (1985). 10.1103/PhysRevA.32.1790
-
(1985)
Phys. Rev. A
, vol.32
, pp. 1790
-
-
Ichimaru, S.1
Tanaka, S.2
-
22
-
-
0000186647
-
-
10.1103/PhysRevA.23.1969;
-
D. B. Boercker, Phys. Rev. A 23, 1969 (1981) 10.1103/PhysRevA.23.1969
-
(1981)
Phys. Rev. A
, vol.23
, pp. 1969
-
-
Boercker, D.B.1
-
24
-
-
84976870425
-
-
10.1002/andp.19303970303
-
H. Bethe, Ann. Phys. 397, 325 (1930). 10.1002/andp.19303970303
-
(1930)
Ann. Phys.
, vol.397
, pp. 325
-
-
Bethe, H.1
-
25
-
-
67149141470
-
-
Here we describe calculations obtained using the HNC equations with Te = Ti. Results with Te Ti were not significantly different.
-
Here we describe calculations obtained using the HNC equations with Te = Ti. Results with Te Ti were not significantly different.
-
-
-
-
27
-
-
67149125337
-
-
We use e (k) 1-4π e2 Re χe0 (k,0) / k2 1+ k TF 2 / k2, where kTF = [-4π e2 Re χe0 (0,0)] 1/2 =4 kF Θ I 1/2 ′ (η) /π aB is the finite temperature Thomas-Fermi screening length [here I1/2 is the usual Fermi function so that ne = I1/2 (η) /2 π2 3 (2 me kB Te) 3/2].
-
We use e (k) 1-4π e2 Re χe0 (k,0) / k2 1+ k TF 2 / k2, where kTF = [-4π e2 Re χe0 (0,0)] 1/2 =4 kF Θ I 1/2 ′ (η) /π aB is the finite temperature Thomas-Fermi screening length [here I1/2 is the usual Fermi function so that ne = I1/2 (η) /2 π2 3 (2 me kB Te) 3/2].
-
-
-
-
28
-
-
0011188612
-
-
10.1103/PhysRevA.33.2575
-
J. Chihara, Phys. Rev. A 33, 2575 (1986). 10.1103/PhysRevA.33.2575
-
(1986)
Phys. Rev. A
, vol.33
, pp. 2575
-
-
Chihara, J.1
-
31
-
-
0035441961
-
-
10.1103/PhysRevE.64.035401
-
M. W. C. Dharma-wardana, Phys. Rev. E 64, 035401 (R) (2001). 10.1103/PhysRevE.64.035401
-
(2001)
Phys. Rev. e
, vol.64
, pp. 035401
-
-
Dharma-Wardana, M.W.C.1
|