-
1
-
-
0014108715
-
-
10.1016/0022-5193(67)90051-3
-
A. T. Winfree, J. Theor. Biol. 16, 15 (1967). 10.1016/0022-5193(67)90051- 3
-
(1967)
J. Theor. Biol.
, vol.16
, pp. 15
-
-
Winfree, A.T.1
-
5
-
-
0018857816
-
-
W. K. Bleeker, A. J. Mackaay, M. Masson-Pevet, L. N. Bouman, and A. E. Becker, Circ. Res. 46, 11 (1980)
-
(1980)
Circ. Res.
, vol.46
, pp. 11
-
-
Bleeker, W.K.1
MacKaay, A.J.2
Masson-Pevet, M.3
Bouman, L.N.4
Becker, A.E.5
-
9
-
-
0026663039
-
-
10.1016/0166-2236(92)90006-T;
-
A. H. Cohen, G. B. Ermentrout, T. Kiemel, N. Kopell, K. A. Sigvardt, and T. L. Williams, Trends Neurosci. 15, 434 (1992) 10.1016/0166-2236(92)90006-T
-
(1992)
Trends Neurosci.
, vol.15
, pp. 434
-
-
Cohen, A.H.1
Ermentrout, G.B.2
Kiemel, T.3
Kopell, N.4
Sigvardt, K.A.5
Williams, T.L.6
-
10
-
-
0034668725
-
-
10.1016/S0361-9230(00)00398-1
-
O. Kiehn, O. Kjaerulff, M. C. Tresch, and R. M. Harris-Warrick, Brain Res. Bull. 53, 649 (2000). 10.1016/S0361-9230(00)00398-1
-
(2000)
Brain Res. Bull.
, vol.53
, pp. 649
-
-
Kiehn, O.1
Kjaerulff, O.2
Tresch, M.C.3
Harris-Warrick, R.M.4
-
11
-
-
0019131584
-
-
10.1126/science.7433976;
-
J. T. Enright, Science 209, 1542 (1980) 10.1126/science.7433976
-
(1980)
Science
, vol.209
, pp. 1542
-
-
Enright, J.T.1
-
12
-
-
0031469709
-
-
10.1016/S0092-8674(00)80473-0;
-
C. Liu, D. R. Weaver, S. H. Strogatz, and S. M. Reppert, Cell 91, 855 (1997) 10.1016/S0092-8674(00)80473-0
-
(1997)
Cell
, vol.91
, pp. 855
-
-
Liu, C.1
Weaver, D.R.2
Strogatz, S.H.3
Reppert, S.M.4
-
13
-
-
0034660223
-
-
10.1002/1097-4695(20000615)43:4<379::AID-NEU6>3.0.CO;2-0
-
C. S. Colwell, J. Neurobiol. 43, 379 (2000). 10.1002/1097-4695(20000615) 43:4<379::AID-NEU6>3.0.CO;2-0
-
(2000)
J. Neurobiol.
, vol.43
, pp. 379
-
-
Colwell, C.S.1
-
16
-
-
33947324206
-
-
10.1523/JNEUROSCI.4623-06.2007
-
L. Melloni, C. Molina, M. Pena, D. Torres, W. Singer, and E. Rodriguez, J. Neurosci. 27, 2858 (2007). 10.1523/JNEUROSCI.4623-06.2007
-
(2007)
J. Neurosci.
, vol.27
, pp. 2858
-
-
Melloni, L.1
Molina, C.2
Pena, M.3
Torres, D.4
Singer, W.5
Rodriguez, E.6
-
17
-
-
0034109490
-
-
10.1016/S0165-0173(99)00084-3
-
P. L. Carlen, F. Skinner, L. Zhang, C. Naus, M. Kushnir, and J. L. Velazquez, Brain Res. Rev. 32, 235 (2000). 10.1016/S0165-0173(99)00084-3
-
(2000)
Brain Res. Rev.
, vol.32
, pp. 235
-
-
Carlen, P.L.1
Skinner, F.2
Zhang, L.3
Naus, C.4
Kushnir, M.5
Velazquez, J.L.6
-
18
-
-
0024165008
-
-
10.1086/415929
-
J. Buck, Q. Rev. Biol. 63, 265 (1988). 10.1086/415929
-
(1988)
Q. Rev. Biol.
, vol.63
, pp. 265
-
-
Buck, J.1
-
19
-
-
0000254372
-
-
10.1126/science.166.3907.891
-
T. J. Walker, Science 166, 891 (1969). 10.1126/science.166.3907.891
-
(1969)
Science
, vol.166
, pp. 891
-
-
Walker, T.J.1
-
20
-
-
0039806342
-
-
10.1038/35002660
-
Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A. L. Barabási, Nature (London) 403, 849 (2000). 10.1038/35002660
-
(2000)
Nature (London)
, vol.403
, pp. 849
-
-
Néda, Z.1
Ravasz, E.2
Brechet, Y.3
Vicsek, T.4
Barabási, A.L.5
-
23
-
-
0027609446
-
-
10.1016/0030-4018(93)90078-J;
-
R. D. Li and T. Erneux, Opt. Commun. 99, 196 (1993) 10.1016/0030-4018(93) 90078-J
-
(1993)
Opt. Commun.
, vol.99
, pp. 196
-
-
Li, R.D.1
Erneux, T.2
-
31
-
-
67149094716
-
-
Numerical evidence in Ref. indicates that frequency clusters are not completely stable in the parameter region with 0
-
Numerical evidence in Ref. indicates that frequency clusters are not completely stable in the parameter region with 0
-
-
-
-
34
-
-
0039592729
-
-
10.1016/S0167-2789(00)00094-4;
-
S. H. Strogatz, Physica D 143, 1 (2000) 10.1016/S0167-2789(00)00094-4
-
(2000)
Physica D
, vol.143
, pp. 1
-
-
Strogatz, S.H.1
-
35
-
-
19944385353
-
-
10.1103/RevModPhys.77.137
-
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77, 137 (2005). 10.1103/RevModPhys.77. 137
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 137
-
-
Acebrón, J.A.1
Bonilla, L.L.2
Pérez Vicente, C.J.3
Ritort, F.4
Spigler, R.5
-
36
-
-
6044220638
-
-
10.1103/PhysRevLett.73.760
-
H. Daido, Phys. Rev. Lett. 73, 760 (1994). 10.1103/PhysRevLett.73.760
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 760
-
-
Daido, H.1
-
37
-
-
28844440454
-
-
10.1103/PhysRevE.72.056137
-
J. E. Sträng and P. Östborn, Phys. Rev. E 72, 056137 (2005). 10.1103/PhysRevE.72.056137
-
(2005)
Phys. Rev. e
, vol.72
, pp. 056137
-
-
Sträng, J.E.1
Östborn, P.2
-
38
-
-
27144513241
-
-
10.1103/PhysRevLett.95.084101;
-
B. Blasius and R. Tönjes, Phys. Rev. Lett. 95, 084101 (2005) 10.1103/PhysRevLett.95.084101
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 084101
-
-
Blasius, B.1
Tönjes, R.2
-
39
-
-
33847021413
-
-
10.1103/PhysRevLett.98.074101;
-
O. U. Kheowan, E. Mihaliuk, B. Blasius, I. Sendina-Nadal, and K. Showalter, Phys. Rev. Lett. 98, 074101 (2007) 10.1103/PhysRevLett.98.074101
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 074101
-
-
Kheowan, O.U.1
Mihaliuk, E.2
Blasius, B.3
Sendina-Nadal, I.4
Showalter, K.5
-
40
-
-
60849129481
-
-
10.1103/PhysRevE.79.016112
-
R. Tönjes and B. Blasius, Phys. Rev. E 79, 016112 (2009). 10.1103/PhysRevE.79.016112
-
(2009)
Phys. Rev. e
, vol.79
, pp. 016112
-
-
Tönjes, R.1
Blasius, B.2
-
43
-
-
0000945656
-
-
10.1103/PhysRevLett.61.231
-
H. Daido, Phys. Rev. Lett. 61, 231 (1988). 10.1103/PhysRevLett.61.231
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 231
-
-
Daido, H.1
-
44
-
-
0000559957
-
-
10.1016/0167-2789(88)90074-7
-
S. H. Strogatz and R. E. Mirollo, Physica D 31, 143 (1988). 10.1016/0167-2789(88)90074-7
-
(1988)
Physica D
, vol.31
, pp. 143
-
-
Strogatz, S.H.1
Mirollo, R.E.2
-
45
-
-
0001042511
-
-
10.1016/0375-9601(91)91048-I;
-
T. Aoyagi and Y. Kuramoto, Phys. Lett. A 155, 410 (1991) 10.1016/0375-9601(91)91048-I
-
(1991)
Phys. Lett. A
, vol.155
, pp. 410
-
-
Aoyagi, T.1
Kuramoto, Y.2
-
47
-
-
28844506120
-
-
10.1103/PhysRevE.72.036217;
-
H. Hong, H. Park, and M. Y. Choi, Phys. Rev. E 72, 036217 (2005) 10.1103/PhysRevE.72.036217
-
(2005)
Phys. Rev. e
, vol.72
, pp. 036217
-
-
Hong, H.1
Park, H.2
Choi, M.Y.3
-
48
-
-
35648939892
-
-
10.1103/PhysRevLett.99.184101
-
H. Hong, H. Chaté, H. Park, and L. H. Tang, Phys. Rev. Lett. 99, 184101 (2007). 10.1103/PhysRevLett.99.184101
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 184101
-
-
Hong, H.1
Chaté, H.2
Park, H.3
Tang, L.H.4
-
50
-
-
41349093319
-
-
10.1103/PhysRevE.66.016105
-
P. Östborn, Phys. Rev. E 66, 016105 (2002). 10.1103/PhysRevE.66. 016105
-
(2002)
Phys. Rev. e
, vol.66
, pp. 016105
-
-
Östborn, P.1
-
51
-
-
37649029744
-
-
10.1103/PhysRevE.70.016120
-
P. Östborn, Phys. Rev. E 70, 016120 (2004). 10.1103/PhysRevE.70. 016120
-
(2004)
Phys. Rev. e
, vol.70
, pp. 016120
-
-
Östborn, P.1
-
52
-
-
0004095143
-
-
edited by R. Kapral and K. Showalter (Kluwer, Dordrecht
-
Chemical Waves and Patterns, edited by, R. Kapral, and, K. Showalter, (Kluwer, Dordrecht, 1995).
-
(1995)
Chemical Waves and Patterns
-
-
-
54
-
-
67149111589
-
-
If we let g→, then almost all hk → and var [hk] will not exist. Those hk =g l nk flk (l, k) that might still be finite are those for which the phases in the flk s are fine tuned so that the sum vanishes.
-
If we let g→, then almost all hk → and var [hk] will not exist. Those hk =g l nk flk (l, k) that might still be finite are those for which the phases in the flk s are fine tuned so that the sum vanishes.
-
-
-
-
55
-
-
67149128087
-
-
Taking the ensemble variance of both sides of Eq. 21 at the fixed point, we get var [d k /dt] = (σω2) + var [hk] +2 cov [ωk, hk]. Because of the statistical inequality | cov [X,Y] | ≤ var [X] var [Y] we see that var [d k /dt] exists since (σω2) and var [hk] do so by assumption [Eq. 23]. It follows that E [d k /dt] also exists. These statements hold for any t. We may express Ωk = d k /dt t. It is straightforward to show that E [Ωk] = E [d k /dt] t and that var[Ωk] ≤max { var [d k /dt] } t Finally, we must have var [Ωk] >0 at a critical fixed point corresponding to a transition to partial synchronization
-
Taking the ensemble variance of both sides of Eq. 21 at the fixed point, we get var [d k /dt] = (σω2) + var [hk] +2 cov [ωk, hk]. Because of the statistical inequality | cov [X,Y] | ≤ var [X] var [Y] we see that var [d k /dt] exists since (σω2) and var [hk] do so by assumption [Eq. 23]. It follows that E [d k /dt] also exists. These statements hold for any t. We may express Ωk = d k /dt t. It is straightforward to show that E [Ωk] = E [d k /dt] t and that var[Ωk] ≤max { var [d k /dt] } t Finally, we must have var [Ωk] >0 at a critical fixed point corresponding to a transition to partial synchronization.
-
-
-
|