메뉴 건너뛰기




Volumn , Issue , 2008, Pages 797-802

Anomaly detection support vector machine and its application to fault diagnosis

Author keywords

[No Author keywords available]

Indexed keywords

ANOMALY DETECTION; ANOMALY-DETECTION ALGORITHMS; BENCHMARK DATASETS; CLASSIFICATION ALGORITHM; DATA SETS; FAULT DIAGNOSIS; MULTI-CLASS; TEST DATA; TWO STAGE; TWO-STAGE ALGORITHM; VOTING STRATEGIES;

EID: 67049162779     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.69     Document Type: Conference Paper
Times cited : (15)

References (15)
  • 3
    • 67049149448 scopus 로고    scopus 로고
    • University of Minnesota - Computer Science and Engineering Technical Report
    • V. Chandola, A. Banerjee, , and V. Kumar. Anomaly Detection: A Survey. University of Minnesota - Computer Science and Engineering Technical Report 07-017, 2007.
    • (2007) Anomaly Detection: A Survey
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 6
    • 56449118713 scopus 로고    scopus 로고
    • Perceptron and svm learning with generalized cost models
    • P. Geibel, U. Bredford, and F. Wysotzki. Perceptron and svm learning with generalized cost models. Intelligent Data Analysis, 8:439-455, 2004.
    • (2004) Intelligent Data Analysis , vol.8 , pp. 439-455
    • Geibel, P.1    Bredford, U.2    Wysotzki, F.3
  • 7
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • MIT Press
    • U. Kresel. Pairwise classification and support vector machines. In Advances in Kernel Methods, pages 255-268. MIT Press, 1999.
    • (1999) Advances in Kernel Methods , pp. 255-268
    • Kresel, U.1
  • 8
    • 0036501528 scopus 로고    scopus 로고
    • Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where unknown faults may occur
    • Y. Li, M. Pont, and N. B. Jones. Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where unknown faults may occur. Pattern Recognition Letters, 23(5):569-677, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.5 , pp. 569-677
    • Li, Y.1    Pont, M.2    Jones, N.B.3
  • 9
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review. Part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review. Part 1: statistical approaches. Signal Processing, 83:2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 10
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review. Part 2: Neural network based approaches
    • M. Markou and S. Singh. Novelty detection: a review. Part 2: neural network based approaches. Signal Processing, 83:2499-2521, 2003.
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 13
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. Tax and R. Duin. Support vector data description. Machine Learning, 54:45-66, 2004.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 14
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • D. M. J. Tax and R. P. Duin. Uniform object generation for optimizing one-class classifiers. Journal of Machine Learning Research, 2:155-173, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 155-173
    • Tax, D.M.J.1    Duin, R.P.2
  • 15
    • 0028427743 scopus 로고
    • Diagnosis of multiple simultaneous fault via hierarchical artificial neural networks
    • K. Watanabe, S. Hirota, L. Hou, and D. M. Himmelblau. Diagnosis of multiple simultaneous fault via hierarchical artificial neural networks. AICHE Journal, 40:839-848, 1994.
    • (1994) AICHE Journal , vol.40 , pp. 839-848
    • Watanabe, K.1    Hirota, S.2    Hou, L.3    Himmelblau, D.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.